ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.05674
  4. Cited By
ConvFormer: Plug-and-Play CNN-Style Transformers for Improving Medical
  Image Segmentation

ConvFormer: Plug-and-Play CNN-Style Transformers for Improving Medical Image Segmentation

9 September 2023
Xian Lin
Zengqiang Yan
Xianbo Deng
Chuansheng Zheng
Li Yu
    ViT
    MedIm
ArXivPDFHTML

Papers citing "ConvFormer: Plug-and-Play CNN-Style Transformers for Improving Medical Image Segmentation"

9 / 9 papers shown
Title
Minding Fuzzy Regions: A Data-driven Alternating Learning Paradigm for Stable Lesion Segmentation
Lexin Fang
Yunyang Xu
Xiang Ma
Xuemei Li
Caiming Zhang
51
0
0
14 Mar 2025
PARF-Net: integrating pixel-wise adaptive receptive fields into hybrid Transformer-CNN network for medical image segmentation
Xu Ma
Mengsheng Chen
Junhui Zhang
Lijuan Song
Fang Du
Zhenhua Yu
ViT
MedIm
41
0
0
06 Jan 2025
Low-Rank Mixture-of-Experts for Continual Medical Image Segmentation
Low-Rank Mixture-of-Experts for Continual Medical Image Segmentation
Qian Chen
Lei Zhu
Hangzhou He
Xinliang Zhang
Shuang Zeng
Qiushi Ren
Yanye Lu
CLL
45
1
0
19 Jun 2024
EMCAD: Efficient Multi-scale Convolutional Attention Decoding for
  Medical Image Segmentation
EMCAD: Efficient Multi-scale Convolutional Attention Decoding for Medical Image Segmentation
Md Mostafijur Rahman
Mustafa Munir
R. Marculescu
MedIm
34
34
0
11 May 2024
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
322
7,503
0
11 Nov 2021
MISSFormer: An Effective Medical Image Segmentation Transformer
MISSFormer: An Effective Medical Image Segmentation Transformer
Xiaohong Huang
Zhifang Deng
Dandan Li
Xueguang Yuan
ViT
MedIm
98
174
0
15 Sep 2021
TransAttUnet: Multi-level Attention-guided U-Net with Transformer for
  Medical Image Segmentation
TransAttUnet: Multi-level Attention-guided U-Net with Transformer for Medical Image Segmentation
Bingzhi Chen
Yishu Liu
Zheng-Wei Zhang
Guangming Lu
A. W. Kong
MedIm
ViT
109
209
0
12 Jul 2021
Convolution-Free Medical Image Segmentation using Transformers
Convolution-Free Medical Image Segmentation using Transformers
Davood Karimi
Serge Vasylechko
Ali Gholipour
ViT
MedIm
84
121
0
26 Feb 2021
TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation
TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation
Yundong Zhang
Huiye Liu
Qiang Hu
ViT
MedIm
206
897
0
16 Feb 2021
1