ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.00933
  4. Cited By
Two-in-One Depth: Bridging the Gap Between Monocular and Binocular
  Self-supervised Depth Estimation

Two-in-One Depth: Bridging the Gap Between Monocular and Binocular Self-supervised Depth Estimation

2 September 2023
Zhengming Zhou
Qiulei Dong
    MDE
ArXiv (abs)PDFHTMLGithub (25★)

Papers citing "Two-in-One Depth: Bridging the Gap Between Monocular and Binocular Self-supervised Depth Estimation"

31 / 31 papers shown
Title
RA-Depth: Resolution Adaptive Self-Supervised Monocular Depth Estimation
RA-Depth: Resolution Adaptive Self-Supervised Monocular Depth Estimation
Mu He
Le Hui
Yikai Bian
J. Ren
Jin Xie
Jian Yang
MDE
62
57
0
25 Jul 2022
Multi-Frame Self-Supervised Depth with Transformers
Multi-Frame Self-Supervised Depth with Transformers
Vitor Campagnolo Guizilini
Rares Andrei Ambrus
Di Chen
Sergey Zakharov
Adrien Gaidon
ViTMDE
58
85
0
15 Apr 2022
Fine-grained Semantics-aware Representation Enhancement for
  Self-supervised Monocular Depth Estimation
Fine-grained Semantics-aware Representation Enhancement for Self-supervised Monocular Depth Estimation
Hyun-Joo Jung
Eunhyeok Park
S. Yoo
MDE
58
111
0
19 Aug 2021
The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth
The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth
Jamie Watson
Oisin Mac Aodha
V. Prisacariu
Gabriel J. Brostow
Michael Firman
MDE
80
271
0
29 Apr 2021
Unsupervised Monocular Depth Learning in Dynamic Scenes
Unsupervised Monocular Depth Learning in Dynamic Scenes
Hanhan Li
A. Gordon
Hang Zhao
Vincent Casser
Angelova
MDE
108
137
0
30 Oct 2020
Parallax Attention for Unsupervised Stereo Correspondence Learning
Parallax Attention for Unsupervised Stereo Correspondence Learning
Longguang Wang
Yulan Guo
Yingqian Wang
Zhengfa Liang
Zaiping Lin
Jungang Yang
W. An
3DPC
101
114
0
16 Sep 2020
Reversing the cycle: self-supervised deep stereo through enhanced
  monocular distillation
Reversing the cycle: self-supervised deep stereo through enhanced monocular distillation
Filippo Aleotti
Fabio Tosi
Li Zhang
Matteo Poggi
S. Mattoccia
SSLMDE
88
52
0
17 Aug 2020
Forget About the LiDAR: Self-Supervised Depth Estimators with MED
  Probability Volumes
Forget About the LiDAR: Self-Supervised Depth Estimators with MED Probability Volumes
Juan Luis Gonzalez
Munchurl Kim
181
87
0
09 Aug 2020
Feature-metric Loss for Self-supervised Learning of Depth and Egomotion
Feature-metric Loss for Self-supervised Learning of Depth and Egomotion
Chang Shu
Kun Yu
Zhixiang Duan
Kuiyuan Yang
SSLMDE
80
234
0
21 Jul 2020
Self-Supervised Monocular Depth Estimation: Solving the Dynamic Object
  Problem by Semantic Guidance
Self-Supervised Monocular Depth Estimation: Solving the Dynamic Object Problem by Semantic Guidance
Marvin Klingner
Jan-Aike Termöhlen
Jonas Mikolajczyk
Tim Fingscheidt
MDE
121
324
0
14 Jul 2020
The Edge of Depth: Explicit Constraints between Segmentation and Depth
The Edge of Depth: Explicit Constraints between Segmentation and Depth
Shengjie Zhu
Garrick Brazil
Xiaoming Liu
MDE
66
105
0
01 Apr 2020
Self-supervised Learning with Geometric Constraints in Monocular Video:
  Connecting Flow, Depth, and Camera
Self-supervised Learning with Geometric Constraints in Monocular Video: Connecting Flow, Depth, and Camera
Yuhua Chen
Cordelia Schmid
C. Sminchisescu
SSLMDE
67
246
0
12 Jul 2019
3D Packing for Self-Supervised Monocular Depth Estimation
3D Packing for Self-Supervised Monocular Depth Estimation
Vitor Campagnolo Guizilini
Rares Andrei Ambrus
Sudeep Pillai
Allan Raventos
Adrien Gaidon
SSL3DPCMDE
81
649
0
06 May 2019
GA-Net: Guided Aggregation Net for End-to-end Stereo Matching
GA-Net: Guided Aggregation Net for End-to-end Stereo Matching
Feihu Zhang
V. Prisacariu
Ruigang Yang
Philip Torr
3DV
54
686
0
13 Apr 2019
Depth from Videos in the Wild: Unsupervised Monocular Depth Learning
  from Unknown Cameras
Depth from Videos in the Wild: Unsupervised Monocular Depth Learning from Unknown Cameras
A. Gordon
Hanhan Li
Rico Jonschkowski
A. Angelova
MDE
73
366
0
10 Apr 2019
Learning monocular depth estimation infusing traditional stereo
  knowledge
Learning monocular depth estimation infusing traditional stereo knowledge
Fabio Tosi
Filippo Aleotti
Matteo Poggi
S. Mattoccia
MDE
61
218
0
08 Apr 2019
Deformable ConvNets v2: More Deformable, Better Results
Deformable ConvNets v2: More Deformable, Better Results
Xizhou Zhu
Han Hu
Stephen Lin
Jifeng Dai
ObjD
118
2,019
0
27 Nov 2018
SegStereo: Exploiting Semantic Information for Disparity Estimation
SegStereo: Exploiting Semantic Information for Disparity Estimation
Guorun Yang
Hengshuang Zhao
Jianping Shi
Zhidong Deng
Jiaya Jia
69
339
0
31 Jul 2018
Deep Ordinal Regression Network for Monocular Depth Estimation
Deep Ordinal Regression Network for Monocular Depth Estimation
Huan Fu
Biwei Huang
Chaohui Wang
Kayhan Batmanghelich
Dacheng Tao
MDE
484
1,733
0
06 Jun 2018
Pyramid Stereo Matching Network
Pyramid Stereo Matching Network
Jia-Ren Chang
Yonghao Chen
3DPC
128
1,509
0
23 Mar 2018
Fusion of stereo and still monocular depth estimates in a
  self-supervised learning context
Fusion of stereo and still monocular depth estimates in a self-supervised learning context
Diogo Martins
K. G. Hecke
Guido de Croon
SSLMDE
33
22
0
20 Mar 2018
GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera
  Pose
GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose
Zhichao Yin
Jianping Shi
MDE
57
1,145
0
06 Mar 2018
Squeeze-and-Excitation Networks
Squeeze-and-Excitation Networks
Jie Hu
Li Shen
Samuel Albanie
Gang Sun
Enhua Wu
427
26,557
0
05 Sep 2017
Sparsity Invariant CNNs
Sparsity Invariant CNNs
J. Uhrig
N. Schneider
Lukas Schneider
Uwe Franke
Thomas Brox
Andreas Geiger
133
827
0
22 Aug 2017
Unsupervised Monocular Depth Estimation with Left-Right Consistency
Unsupervised Monocular Depth Estimation with Left-Right Consistency
Clément Godard
Oisin Mac Aodha
Gabriel J. Brostow
MDE
150
2,887
0
13 Sep 2016
The Cityscapes Dataset for Semantic Urban Scene Understanding
The Cityscapes Dataset for Semantic Urban Scene Understanding
Marius Cordts
Mohamed Omran
Sebastian Ramos
Timo Rehfeld
Markus Enzweiler
Rodrigo Benenson
Uwe Franke
Stefan Roth
Bernt Schiele
1.1K
11,644
0
06 Apr 2016
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
Justin Johnson
Alexandre Alahi
Li Fei-Fei
SupR
251
10,264
0
27 Mar 2016
Fast and Accurate Deep Network Learning by Exponential Linear Units
  (ELUs)
Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
Djork-Arné Clevert
Thomas Unterthiner
Sepp Hochreiter
305
5,534
0
23 Nov 2015
Predicting Depth, Surface Normals and Semantic Labels with a Common
  Multi-Scale Convolutional Architecture
Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture
David Eigen
Rob Fergus
VLMMDE
209
2,683
0
18 Nov 2014
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLMObjD
1.7K
39,595
0
01 Sep 2014
Depth Map Prediction from a Single Image using a Multi-Scale Deep
  Network
Depth Map Prediction from a Single Image using a Multi-Scale Deep Network
David Eigen
Christian Puhrsch
Rob Fergus
MDE3DPC3DV
241
4,066
0
09 Jun 2014
1