ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.14815
  4. Cited By
Distributionally Robust Statistical Verification with Imprecise Neural Networks

Distributionally Robust Statistical Verification with Imprecise Neural Networks

28 August 2023
Souradeep Dutta
Michele Caprio
Vivian Lin
Matthew Cleaveland
Kuk Jin Jang
I. Ruchkin
O. Sokolsky
Insup Lee
    OOD
    AAML
ArXivPDFHTML

Papers citing "Distributionally Robust Statistical Verification with Imprecise Neural Networks"

50 / 50 papers shown
Title
Integral Imprecise Probability Metrics
Integral Imprecise Probability Metrics
Siu Lun Chau
Michele Caprio
Krikamol Muandet
99
0
0
22 May 2025
Distributionally Robust Predictive Runtime Verification under Spatio-Temporal Logic Specifications
Distributionally Robust Predictive Runtime Verification under Spatio-Temporal Logic Specifications
Yiqi Zhao
Emily Zhu
Bardh Hoxha
Georgios Fainekos
Jyotirmoy Deshmukh
Lars Lindemann
190
0
0
03 Apr 2025
Conformal Prediction Regions are Imprecise Highest Density Regions
Conformal Prediction Regions are Imprecise Highest Density Regions
Michele Caprio
Yusuf Sale
Eyke Hüllermeier
167
1
0
10 Feb 2025
Conformalized Credal Regions for Classification with Ambiguous Ground Truth
Conformalized Credal Regions for Classification with Ambiguous Ground Truth
Michele Caprio
David Stutz
Shuo Li
Arnaud Doucet
UQCV
199
5
0
07 Nov 2024
Uncertainty-based Offline Variational Bayesian Reinforcement Learning
  for Robustness under Diverse Data Corruptions
Uncertainty-based Offline Variational Bayesian Reinforcement Learning for Robustness under Diverse Data Corruptions
Rui Yang
Jie Wang
Guoping Wu
Yangqiu Song
AAML
OffRL
118
1
0
01 Nov 2024
Statistical Multicriteria Benchmarking via the GSD-Front
Statistical Multicriteria Benchmarking via the GSD-Front
Christoph Jansen
G. Schollmeyer
Julian Rodemann
Hannah Blocher
Thomas Augustin
80
4
0
06 Jun 2024
A Method of Moments Embedding Constraint and its Application to
  Semi-Supervised Learning
A Method of Moments Embedding Constraint and its Application to Semi-Supervised Learning
Michael Majurski
Sumeet Menon
Parniyan Farvardin
David Chapman
67
3
0
27 Apr 2024
Robust Conformal Prediction for STL Runtime Verification under
  Distribution Shift
Robust Conformal Prediction for STL Runtime Verification under Distribution Shift
Yiqi Zhao
Bardh Hoxha
Georgios Fainekos
Jyotirmoy V. Deshmukh
Lars Lindemann
161
15
0
16 Nov 2023
Bridging Dimensions: Confident Reachability for High-Dimensional
  Controllers
Bridging Dimensions: Confident Reachability for High-Dimensional Controllers
Yuang Geng
Jake Brandon Baldauf
Souradeep Dutta
Chao Huang
Ivan Ruchkin
88
5
0
08 Nov 2023
A Novel Bayes' Theorem for Upper Probabilities
A Novel Bayes' Theorem for Upper Probabilities
Michele Caprio
Yusuf Sale
Eyke Hüllermeier
Insup Lee
74
12
0
13 Jul 2023
A System-Level View on Out-of-Distribution Data in Robotics
A System-Level View on Out-of-Distribution Data in Robotics
Rohan Sinha
Apoorva Sharma
Somrita Banerjee
T. Lew
Rachel Luo
Spencer M. Richards
Yixiao Sun
Edward Schmerling
Marco Pavone
UQCV
81
26
0
28 Dec 2022
Discovering Closed-Loop Failures of Vision-Based Controllers via
  Reachability Analysis
Discovering Closed-Loop Failures of Vision-Based Controllers via Reachability Analysis
Kaustav Chakraborty
Somil Bansal
48
13
0
04 Nov 2022
Conformal Prediction for STL Runtime Verification
Conformal Prediction for STL Runtime Verification
Lars Lindemann
Xin Qin
Jyotirmoy V. Deshmukh
George J. Pappas
168
48
0
03 Nov 2022
HiddenGems: Efficient safety boundary detection with active learning
HiddenGems: Efficient safety boundary detection with active learning
Aleksandar Petrov
Carter Fang
Khang Minh Pham
Y. Eng
J. Fu
S. Pendleton
74
2
0
25 Oct 2022
From Intelligent Agents to Trustworthy Human-Centred Multiagent Systems
From Intelligent Agents to Trustworthy Human-Centred Multiagent Systems
Mohammad Divband Soorati
E. Gerding
Enrico Marchioni
Pavel Naumov
Timothy J. Norman
...
Adam Sobey
Sebastian Stein
Danesh Tarpore
V. Yazdanpanah
Jie Zhang
LLMAG
AI4CE
54
5
0
05 Oct 2022
Risk Verification of Stochastic Systems with Neural Network Controllers
Risk Verification of Stochastic Systems with Neural Network Controllers
Matthew Cleaveland
Lars Lindemann
Radoslav Ivanov
George Pappas
64
9
0
26 Aug 2022
An Evidential Neural Network Model for Regression Based on Random Fuzzy
  Numbers
An Evidential Neural Network Model for Regression Based on Random Fuzzy Numbers
Thierry Denoeux
UQCV
130
12
0
01 Aug 2022
Neural network model for imprecise regression with interval dependent
  variables
Neural network model for imprecise regression with interval dependent variables
K. Tretiak
G. Schollmeyer
S. Ferson
29
13
0
06 Jun 2022
A Simple and Efficient Sampling-based Algorithm for General Reachability
  Analysis
A Simple and Efficient Sampling-based Algorithm for General Reachability Analysis
T. Lew
Lucas Janson
Riccardo Bonalli
Marco Pavone
69
18
0
10 Dec 2021
Learning Representations for Pixel-based Control: What Matters and Why?
Learning Representations for Pixel-based Control: What Matters and Why?
Manan Tomar
Utkarsh Aashu Mishra
Amy Zhang
Matthew E. Taylor
SSL
OffRL
60
26
0
15 Nov 2021
Sample-Efficient Safety Assurances using Conformal Prediction
Sample-Efficient Safety Assurances using Conformal Prediction
Rachel Luo
Shengjia Zhao
Jonathan Kuck
Boris Ivanovic
Silvio Savarese
Edward Schmerling
Marco Pavone
187
58
0
28 Sep 2021
Neural Predictive Monitoring under Partial Observability
Neural Predictive Monitoring under Partial Observability
Francesca Cairoli
Luca Bortolussi
Nicola Paoletti
75
14
0
16 Aug 2021
OVERT: An Algorithm for Safety Verification of Neural Network Control
  Policies for Nonlinear Systems
OVERT: An Algorithm for Safety Verification of Neural Network Control Policies for Nonlinear Systems
Chelsea Sidrane
Amir Maleki
A. Irfan
Mykel J. Kochenderfer
45
48
0
03 Aug 2021
Revisiting the Calibration of Modern Neural Networks
Revisiting the Calibration of Modern Neural Networks
Matthias Minderer
Josip Djolonga
Rob Romijnders
F. Hubis
Xiaohua Zhai
N. Houlsby
Dustin Tran
Mario Lucic
UQCV
98
366
0
15 Jun 2021
Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
  under Model Uncertainty
Pointwise Feasibility of Gaussian Process-based Safety-Critical Control under Model Uncertainty
F. Castañeda
Jason J. Choi
Bike Zhang
Claire Tomlin
Koushil Sreenath
58
52
0
13 Jun 2021
Adaptive Conformal Inference Under Distribution Shift
Adaptive Conformal Inference Under Distribution Shift
Isaac Gibbs
Emmanuel Candès
176
248
0
01 Jun 2021
PAC Confidence Predictions for Deep Neural Network Classifiers
PAC Confidence Predictions for Deep Neural Network Classifiers
Sangdon Park
Shuo Li
Insup Lee
Osbert Bastani
UQCV
84
27
0
02 Nov 2020
Robust Validation: Confident Predictions Even When Distributions Shift
Robust Validation: Confident Predictions Even When Distributions Shift
Maxime Cauchois
Suyash Gupta
Alnur Ali
John C. Duchi
OOD
120
94
0
10 Aug 2020
DeepAbstract: Neural Network Abstraction for Accelerating Verification
DeepAbstract: Neural Network Abstraction for Accelerating Verification
P. Ashok
Vahid Hashemi
Jan Křetínský
S. Mohr
30
50
0
24 Jun 2020
Distribution-free binary classification: prediction sets, confidence
  intervals and calibration
Distribution-free binary classification: prediction sets, confidence intervals and calibration
Chirag Gupta
Aleksandr Podkopaev
Aaditya Ramdas
UQCV
70
82
0
18 Jun 2020
A Survey of Algorithms for Black-Box Safety Validation of Cyber-Physical
  Systems
A Survey of Algorithms for Black-Box Safety Validation of Cyber-Physical Systems
Anthony Corso
Robert J. Moss
Mark Koren
Ritchie Lee
Mykel J. Kochenderfer
77
175
0
06 May 2020
Probabilistic Safety for Bayesian Neural Networks
Probabilistic Safety for Bayesian Neural Networks
Matthew Wicker
Luca Laurenti
A. Patané
Marta Z. Kwiatkowska
AAML
50
52
0
21 Apr 2020
On Linear Optimization over Wasserstein Balls
On Linear Optimization over Wasserstein Balls
Man-Chung Yue
Daniel Kuhn
W. Wiesemann
59
52
0
15 Apr 2020
NNV: The Neural Network Verification Tool for Deep Neural Networks and
  Learning-Enabled Cyber-Physical Systems
NNV: The Neural Network Verification Tool for Deep Neural Networks and Learning-Enabled Cyber-Physical Systems
Hoang-Dung Tran
Xiaodong Yang
Diego Manzanas Lopez
Patrick Musau
L. V. Nguyen
Weiming Xiang
Stanley Bak
Taylor T. Johnson
92
242
0
12 Apr 2020
Interval Neural Networks: Uncertainty Scores
Interval Neural Networks: Uncertainty Scores
Luis Oala
Cosmas Heiß
Jan Macdonald
M. März
Wojciech Samek
Gitta Kutyniok
UQCV
52
25
0
25 Mar 2020
An Abstraction-Based Framework for Neural Network Verification
An Abstraction-Based Framework for Neural Network Verification
Y. Elboher
Justin Emile Gottschlich
Guy Katz
99
126
0
31 Oct 2019
Probabilistic Verification and Reachability Analysis of Neural Networks
  via Semidefinite Programming
Probabilistic Verification and Reachability Analysis of Neural Networks via Semidefinite Programming
Mahyar Fazlyab
M. Morari
George J. Pappas
AAML
64
41
0
09 Oct 2019
Uncertainty Quantification with Statistical Guarantees in End-to-End
  Autonomous Driving Control
Uncertainty Quantification with Statistical Guarantees in End-to-End Autonomous Driving Control
Rhiannon Michelmore
Matthew Wicker
Luca Laurenti
L. Cardelli
Y. Gal
Marta Z. Kwiatkowska
BDL
108
105
0
21 Sep 2019
Statistical Guarantees for the Robustness of Bayesian Neural Networks
Statistical Guarantees for the Robustness of Bayesian Neural Networks
L. Cardelli
Marta Kwiatkowska
Luca Laurenti
Nicola Paoletti
A. Patané
Matthew Wicker
AAML
75
54
0
05 Mar 2019
VERIFAI: A Toolkit for the Design and Analysis of Artificial
  Intelligence-Based Systems
VERIFAI: A Toolkit for the Design and Analysis of Artificial Intelligence-Based Systems
T. Dreossi
Daniel J. Fremont
Shromona Ghosh
Edward J. Kim
H. Ravanbakhsh
Marcell Vazquez-Chanlatte
Sanjit A. Seshia
45
29
0
12 Feb 2019
When Gaussian Process Meets Big Data: A Review of Scalable GPs
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
87
690
0
03 Jul 2018
On the Equivalence of f-Divergence Balls and Density Bands in Robust
  Detection
On the Equivalence of f-Divergence Balls and Density Bands in Robust Detection
Michael Faub
A. Zoubir
H. Vincent Poor
22
3
0
16 Apr 2018
High-Quality Prediction Intervals for Deep Learning: A
  Distribution-Free, Ensembled Approach
High-Quality Prediction Intervals for Deep Learning: A Distribution-Free, Ensembled Approach
Tim Pearce
Mohamed H. Zaki
Alexandra Brintrup
A. Neely
UQCV
253
280
0
20 Feb 2018
Context-Specific Validation of Data-Driven Models
Context-Specific Validation of Data-Driven Models
Somil Bansal
Shromona Ghosh
Alberto L. Sangiovanni-Vincentelli
Sanjit A. Seshia
Claire Tomlin
33
3
0
14 Feb 2018
Judicious Judgment Meets Unsettling Updating: Dilation, Sure Loss, and
  Simpson's Paradox
Judicious Judgment Meets Unsettling Updating: Dilation, Sure Loss, and Simpson's Paradox
Ruobin Gong
Xiangxu Meng
32
37
0
24 Dec 2017
On Calibration of Modern Neural Networks
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
299
5,833
0
14 Jun 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
315
1,868
0
03 Feb 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
831
5,821
0
05 Dec 2016
OpenAI Gym
OpenAI Gym
Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
OffRL
ODL
217
5,076
0
05 Jun 2016
A tutorial on conformal prediction
A tutorial on conformal prediction
Glenn Shafer
V. Vovk
452
1,141
0
21 Jun 2007
1