ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.14759
  4. Cited By
May the Force be with You: Unified Force-Centric Pre-Training for 3D
  Molecular Conformations

May the Force be with You: Unified Force-Centric Pre-Training for 3D Molecular Conformations

24 August 2023
Rui Feng
Qi Zhu
Huan Tran
Binghong Chen
Aubrey Toland
R. Ramprasad
Chao Zhang
    AI4CE
ArXivPDFHTML

Papers citing "May the Force be with You: Unified Force-Centric Pre-Training for 3D Molecular Conformations"

16 / 16 papers shown
Title
PolyConf: Unlocking Polymer Conformation Generation through Hierarchical Generative Models
PolyConf: Unlocking Polymer Conformation Generation through Hierarchical Generative Models
Fanmeng Wang
Wentao Guo
Qi Ou
Hongshuai Wang
Haitao Lin
Hongteng Xu
Zhifeng Gao
AI4CE
79
2
0
11 Apr 2025
Supervised Pretraining for Molecular Force Fields and Properties
  Prediction
Supervised Pretraining for Molecular Force Fields and Properties Prediction
Xiang Gao
Weihao Gao
Wen Xiao
Zhirui Wang
Chong Wang
Liang Xiang
AI4CE
57
9
0
23 Nov 2022
Pre-training via Denoising for Molecular Property Prediction
Pre-training via Denoising for Molecular Property Prediction
Sheheryar Zaidi
Michael Schaarschmidt
James Martens
Hyunjik Kim
Yee Whye Teh
Alvaro Sanchez-Gonzalez
Peter W. Battaglia
Razvan Pascanu
Jonathan Godwin
DiffM
AI4CE
87
126
0
31 May 2022
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular
  Potentials
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular Potentials
Philipp Thölke
Gianni De Fabritiis
AI4CE
72
195
0
05 Feb 2022
Simple GNN Regularisation for 3D Molecular Property Prediction & Beyond
Simple GNN Regularisation for 3D Molecular Property Prediction & Beyond
Jonathan Godwin
Michael Schaarschmidt
Alex Gaunt
Alvaro Sanchez-Gonzalez
Yulia Rubanova
Petar Velivcković
J. Kirkpatrick
Peter W. Battaglia
71
60
0
15 Jun 2021
GemNet: Universal Directional Graph Neural Networks for Molecules
GemNet: Universal Directional Graph Neural Networks for Molecules
Johannes Klicpera
Florian Becker
Stephan Günnemann
AI4CE
83
457
0
02 Jun 2021
Learning Gradient Fields for Molecular Conformation Generation
Learning Gradient Fields for Molecular Conformation Generation
Chence Shi
Shitong Luo
Minkai Xu
Jian Tang
DiffM
AI4CE
70
215
0
09 May 2021
OGB-LSC: A Large-Scale Challenge for Machine Learning on Graphs
OGB-LSC: A Large-Scale Challenge for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Hongyu Ren
Maho Nakata
Yuxiao Dong
J. Leskovec
AI4CE
63
411
0
17 Mar 2021
E(n) Equivariant Graph Neural Networks
E(n) Equivariant Graph Neural Networks
Victor Garcia Satorras
Emiel Hoogeboom
Max Welling
100
1,019
0
19 Feb 2021
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
325
6,444
0
26 Nov 2020
Machine Learning Force Fields
Machine Learning Force Fields
Oliver T. Unke
Stefan Chmiela
H. E. Sauceda
M. Gastegger
I. Poltavsky
Kristof T. Schütt
A. Tkatchenko
K. Müller
AI4CE
97
910
0
14 Oct 2020
SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks
SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks
F. Fuchs
Daniel E. Worrall
Volker Fischer
Max Welling
3DPC
151
692
0
18 Jun 2020
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
301
2,728
0
02 May 2020
Directional Message Passing for Molecular Graphs
Directional Message Passing for Molecular Graphs
Johannes Klicpera
Janek Groß
Stephan Günnemann
120
871
0
06 Mar 2020
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDa
DiffM
228
3,893
0
12 Jul 2019
Tensor field networks: Rotation- and translation-equivariant neural
  networks for 3D point clouds
Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
Nathaniel Thomas
Tess E. Smidt
S. Kearnes
Lusann Yang
Li Li
Kai Kohlhoff
Patrick F. Riley
3DPC
83
969
0
22 Feb 2018
1