Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2308.10087
Cited By
GNNPipe: Scaling Deep GNN Training with Pipelined Model Parallelism
19 August 2023
Jingji Chen
Zhuoming Chen
Xuehai Qian
GNN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"GNNPipe: Scaling Deep GNN Training with Pipelined Model Parallelism"
33 / 33 papers shown
Title
GSplit: Scaling Graph Neural Network Training on Large Graphs via Split-Parallelism
Sandeep Polisetty
Juelin Liu
Kobi Falus
Yi R. Fung
Seung-Hwan Lim
Hui Guan
Marco Serafini
GNN
73
11
0
24 Mar 2023
Distributed Graph Neural Network Training: A Survey
Yingxia Shao
Hongzheng Li
Xizhi Gu
Hongbo Yin
Yawen Li
Xupeng Miao
Wentao Zhang
Tengjiao Wang
Lei Chen
GNN
AI4CE
80
60
0
01 Nov 2022
MGG: Accelerating Graph Neural Networks with Fine-grained intra-kernel Communication-Computation Pipelining on Multi-GPU Platforms
Yuke Wang
Boyuan Feng
Zheng Wang
Tong Geng
Kevin J. Barker
Ang Li
Yufei Ding
GNN
57
27
0
14 Sep 2022
BNS-GCN: Efficient Full-Graph Training of Graph Convolutional Networks with Partition-Parallelism and Random Boundary Node Sampling
Cheng Wan
Youjie Li
Ang Li
Namjae Kim
Yingyan Lin
GNN
79
76
0
21 Mar 2022
PipeGCN: Efficient Full-Graph Training of Graph Convolutional Networks with Pipelined Feature Communication
Cheng Wan
Youjie Li
Cameron R. Wolfe
Anastasios Kyrillidis
Namjae Kim
Yingyan Lin
GNN
58
70
0
20 Mar 2022
Decoupling the Depth and Scope of Graph Neural Networks
Hanqing Zeng
Muhan Zhang
Yinglong Xia
Ajitesh Srivastava
Andrey Malevich
Rajgopal Kannan
Viktor Prasanna
Long Jin
Ren Chen
GNN
80
145
0
19 Jan 2022
Training Graph Neural Networks with 1000 Layers
Guohao Li
Matthias Muller
Guohao Li
V. Koltun
GNN
AI4CE
81
240
0
14 Jun 2021
GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings
Matthias Fey
J. E. Lenssen
F. Weichert
J. Leskovec
GNN
38
134
0
10 Jun 2021
DistDGL: Distributed Graph Neural Network Training for Billion-Scale Graphs
Da Zheng
Chao Ma
Minjie Wang
Jinjing Zhou
Qidong Su
Xiang Song
Quan Gan
Zheng Zhang
George Karypis
FedML
GNN
50
248
0
11 Oct 2020
Neural Subgraph Matching
Rex Ying
Ying
Zhaoyu Lou
Jiaxuan You
Chengtao Wen
A. Canedo
J. Leskovec
GNN
41
93
0
06 Jul 2020
Simple and Deep Graph Convolutional Networks
Ming Chen
Zhewei Wei
Zengfeng Huang
Bolin Ding
Yaliang Li
GNN
116
1,485
0
04 Jul 2020
DAPPLE: A Pipelined Data Parallel Approach for Training Large Models
Shiqing Fan
Yi Rong
Chen Meng
Zongyan Cao
Siyu Wang
...
Jun Yang
Lixue Xia
Lansong Diao
Xiaoyong Liu
Wei Lin
82
237
0
02 Jul 2020
DeeperGCN: All You Need to Train Deeper GCNs
Guohao Li
Chenxin Xiong
Ali K. Thabet
Guohao Li
GNN
183
442
0
13 Jun 2020
Towards Deeper Graph Neural Networks with Differentiable Group Normalization
Kaixiong Zhou
Xiao Huang
Yuening Li
Daochen Zha
Rui Chen
Xia Hu
120
205
0
12 Jun 2020
Bayesian Graph Neural Networks with Adaptive Connection Sampling
Arman Hasanzadeh
Ehsan Hajiramezanali
Shahin Boluki
Mingyuan Zhou
N. Duffield
Krishna R. Narayanan
Xiaoning Qian
BDL
46
118
0
07 Jun 2020
Layer-Dependent Importance Sampling for Training Deep and Large Graph Convolutional Networks
Difan Zou
Ziniu Hu
Yewen Wang
Song Jiang
Yizhou Sun
Quanquan Gu
GNN
90
282
0
17 Nov 2019
Multi-scale Attributed Node Embedding
Benedek Rozemberczki
Carl Allen
Rik Sarkar
GNN
252
860
0
28 Sep 2019
DropEdge: Towards Deep Graph Convolutional Networks on Node Classification
Yu Rong
Wenbing Huang
Tingyang Xu
Junzhou Huang
104
1,339
0
25 Jul 2019
GraphSAINT: Graph Sampling Based Inductive Learning Method
Hanqing Zeng
Hongkuan Zhou
Ajitesh Srivastava
Rajgopal Kannan
Viktor Prasanna
GNN
137
966
0
10 Jul 2019
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks
Wei-Lin Chiang
Xuanqing Liu
Si Si
Yang Li
Samy Bengio
Cho-Jui Hsieh
GNN
142
1,272
0
20 May 2019
Fast Graph Representation Learning with PyTorch Geometric
Matthias Fey
J. E. Lenssen
3DH
GNN
3DPC
218
4,336
0
06 Mar 2019
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
232
7,638
0
01 Oct 2018
FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling
Jie Chen
Tengfei Ma
Cao Xiao
GNN
141
1,513
0
30 Jan 2018
Dynamic Graph CNN for Learning on Point Clouds
Yue Wang
Yongbin Sun
Ziwei Liu
Sanjay E. Sarma
M. Bronstein
Justin Solomon
GNN
3DPC
255
6,132
0
24 Jan 2018
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
454
20,124
0
30 Oct 2017
Inductive Representation Learning on Large Graphs
William L. Hamilton
Z. Ying
J. Leskovec
472
15,218
0
07 Jun 2017
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
580
7,441
0
04 Apr 2017
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
597
28,999
0
09 Sep 2016
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN
3DV
758
36,781
0
25 Aug 2016
Layer Normalization
Jimmy Lei Ba
J. Kiros
Geoffrey E. Hinton
381
10,481
0
21 Jul 2016
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
872
27,350
0
02 Dec 2015
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
440
43,635
0
17 Sep 2014
One weird trick for parallelizing convolutional neural networks
A. Krizhevsky
GNN
88
1,302
0
23 Apr 2014
1