Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2308.09037
Cited By
MarginMatch: Improving Semi-Supervised Learning with Pseudo-Margins
17 August 2023
Tiberiu Sosea
Cornelia Caragea
Re-assign community
ArXiv (abs)
PDF
HTML
Github (8★)
Papers citing
"MarginMatch: Improving Semi-Supervised Learning with Pseudo-Margins"
33 / 33 papers shown
Title
Pseudo-Labeling Based Practical Semi-Supervised Meta-Training for Few-Shot Learning
Xingping Dong
Tianran Ouyang
Shengcai Liao
Bo Du
Ling Shao
80
5
0
14 Jul 2022
FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling
Bowen Zhang
Yidong Wang
Wenxin Hou
Hao Wu
Jindong Wang
Manabu Okumura
T. Shinozaki
AAML
332
895
0
15 Oct 2021
OpenCoS: Contrastive Semi-supervised Learning for Handling Open-set Unlabeled Data
Jongjin Park
Sukmin Yun
Jongheon Jeong
Jinwoo Shin
70
29
0
29 Jun 2021
A Simple Framework for Contrastive Learning of Visual Representations
Ting-Li Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
SSL
372
18,778
0
13 Feb 2020
Identifying Mislabeled Data using the Area Under the Margin Ranking
Geoff Pleiss
Tianyi Zhang
Ethan R. Elenberg
Kilian Q. Weinberger
NoLa
89
272
0
28 Jan 2020
FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence
Kihyuk Sohn
David Berthelot
Chun-Liang Li
Zizhao Zhang
Nicholas Carlini
E. D. Cubuk
Alexey Kurakin
Han Zhang
Colin Raffel
AAML
157
3,558
0
21 Jan 2020
ReMixMatch: Semi-Supervised Learning with Distribution Alignment and Augmentation Anchoring
David Berthelot
Nicholas Carlini
E. D. Cubuk
Alexey Kurakin
Kihyuk Sohn
Han Zhang
Colin Raffel
95
683
0
21 Nov 2019
Self-training with Noisy Student improves ImageNet classification
Qizhe Xie
Minh-Thang Luong
Eduard H. Hovy
Quoc V. Le
NoLa
309
2,387
0
11 Nov 2019
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
Colin Raffel
Noam M. Shazeer
Adam Roberts
Katherine Lee
Sharan Narang
Michael Matena
Yanqi Zhou
Wei Li
Peter J. Liu
AIMat
445
20,298
0
23 Oct 2019
RandAugment: Practical automated data augmentation with a reduced search space
E. D. Cubuk
Barret Zoph
Jonathon Shlens
Quoc V. Le
MQ
241
3,503
0
30 Sep 2019
Pseudo-Labeling and Confirmation Bias in Deep Semi-Supervised Learning
Eric Arazo
Diego Ortego
Paul Albert
Noel E. O'Connor
Kevin McGuinness
119
841
0
08 Aug 2019
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Mingxing Tan
Quoc V. Le
3DV
MedIm
142
18,168
0
28 May 2019
MixMatch: A Holistic Approach to Semi-Supervised Learning
David Berthelot
Nicholas Carlini
Ian Goodfellow
Nicolas Papernot
Avital Oliver
Colin Raffel
145
3,033
0
06 May 2019
Unsupervised Data Augmentation for Consistency Training
Qizhe Xie
Zihang Dai
Eduard H. Hovy
Minh-Thang Luong
Quoc V. Le
135
2,320
0
29 Apr 2019
Interpolation Consistency Training for Semi-Supervised Learning
Vikas Verma
Kenji Kawaguchi
Alex Lamb
Arno Solin
Arno Solin
Yoshua Bengio
David Lopez-Paz
107
770
0
09 Mar 2019
Predicting the Generalization Gap in Deep Networks with Margin Distributions
Yiding Jiang
Dilip Krishnan
H. Mobahi
Samy Bengio
UQCV
93
199
0
28 Sep 2018
Exploring the Limits of Weakly Supervised Pretraining
D. Mahajan
Ross B. Girshick
Vignesh Ramanathan
Kaiming He
Manohar Paluri
Yixuan Li
Ashwin R. Bharambe
Laurens van der Maaten
VLM
190
1,369
0
02 May 2018
Large Margin Deep Networks for Classification
Gamaleldin F. Elsayed
Dilip Krishnan
H. Mobahi
Kevin Regan
Samy Bengio
MQ
56
284
0
15 Mar 2018
Deep Learning Scaling is Predictable, Empirically
Joel Hestness
Sharan Narang
Newsha Ardalani
G. Diamos
Heewoo Jun
Hassan Kianinejad
Md. Mostofa Ali Patwary
Yang Yang
Yanqi Zhou
99
742
0
01 Dec 2017
WebVision Database: Visual Learning and Understanding from Web Data
Wen Li
Limin Wang
Wei Li
E. Agustsson
Luc Van Gool
VLM
84
441
0
09 Aug 2017
Spectrally-normalized margin bounds for neural networks
Peter L. Bartlett
Dylan J. Foster
Matus Telgarsky
ODL
207
1,224
0
26 Jun 2017
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
299
5,855
0
14 Jun 2017
Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning
Takeru Miyato
S. Maeda
Masanori Koyama
S. Ishii
GAN
148
2,734
0
13 Apr 2017
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
345
4,629
0
10 Nov 2016
Temporal Ensembling for Semi-Supervised Learning
S. Laine
Timo Aila
UQCV
185
2,566
0
07 Oct 2016
Regularization With Stochastic Transformations and Perturbations for Deep Semi-Supervised Learning
Mehdi S. M. Sajjadi
Mehran Javanmardi
Tolga Tasdizen
BDL
85
1,113
0
14 Jun 2016
Mutual Exclusivity Loss for Semi-Supervised Deep Learning
Mehdi S. M. Sajjadi
Mehran Javanmardi
Tolga Tasdizen
SSL
42
80
0
09 Jun 2016
Adversarial Training Methods for Semi-Supervised Text Classification
Takeru Miyato
Andrew M. Dai
Ian Goodfellow
GAN
75
1,061
0
25 May 2016
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
349
7,995
0
23 May 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,322
0
10 Dec 2015
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
362
19,660
0
09 Mar 2015
Learning with Pseudo-Ensembles
Philip Bachman
O. Alsharif
Doina Precup
89
601
0
16 Dec 2014
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
477
43,685
0
17 Sep 2014
1