ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.06129
  4. Cited By
Uncertainty Quantification for Image-based Traffic Prediction across
  Cities

Uncertainty Quantification for Image-based Traffic Prediction across Cities

11 August 2023
Alexander Timans
Nina Wiedemann
Nishant Kumar
Ye Hong
Martin Raubal
ArXivPDFHTML

Papers citing "Uncertainty Quantification for Image-based Traffic Prediction across Cities"

50 / 58 papers shown
Title
Measuring the Confidence of Traffic Forecasting Models: Techniques,
  Experimental Comparison and Guidelines towards Their Actionability
Measuring the Confidence of Traffic Forecasting Models: Techniques, Experimental Comparison and Guidelines towards Their Actionability
I. Laña
Ignacio
I. Olabarrieta
Javier Del Ser
54
1
0
28 Oct 2022
Deep-Ensemble-Based Uncertainty Quantification in Spatiotemporal Graph
  Neural Networks for Traffic Forecasting
Deep-Ensemble-Based Uncertainty Quantification in Spatiotemporal Graph Neural Networks for Traffic Forecasting
Tanwi Mallick
Prasanna Balaprakash
Jane Macfarlane
BDL
48
11
0
04 Apr 2022
Traffic4cast at NeurIPS 2021 -- Temporal and Spatial Few-Shot Transfer
  Learning in Gridded Geo-Spatial Processes
Traffic4cast at NeurIPS 2021 -- Temporal and Spatial Few-Shot Transfer Learning in Gridded Geo-Spatial Processes
Christian Eichenberger
M. Neun
Henry Martin
Pedro Herruzo
M. Spanring
...
Fei Tang
A. Gruca
Michael K Kopp
David P. Kreil
Sepp Hochreiter
79
20
0
31 Mar 2022
Deep Ensembles Work, But Are They Necessary?
Deep Ensembles Work, But Are They Necessary?
Taiga Abe
E. Kelly Buchanan
Geoff Pleiss
R. Zemel
John P. Cunningham
OOD
UQCV
88
63
0
14 Feb 2022
Learning to Transfer for Traffic Forecasting via Multi-task Learning
Learning to Transfer for Traffic Forecasting via Multi-task Learning
Y. Lu
AI4TS
66
7
0
27 Nov 2021
Traffic Forecasting on Traffic Moving Snippets
Traffic Forecasting on Traffic Moving Snippets
Nina Wiedemann
Martin Raubal
AI4TS
50
2
0
27 Oct 2021
Uncertainty Toolbox: an Open-Source Library for Assessing, Visualizing,
  and Improving Uncertainty Quantification
Uncertainty Toolbox: an Open-Source Library for Assessing, Visualizing, and Improving Uncertainty Quantification
Youngseog Chung
I. Char
Han Guo
J. Schneider
Willie Neiswanger
63
71
0
21 Sep 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
203
1,146
0
07 Jul 2021
Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep
  Learning
Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep Learning
Zachary Nado
Neil Band
Mark Collier
Josip Djolonga
Michael W. Dusenberry
...
D. Sculley
Balaji Lakshminarayanan
Jasper Snoek
Y. Gal
Dustin Tran
UQCV
ELM
68
96
0
07 Jun 2021
Quantifying Uncertainty in Deep Spatiotemporal Forecasting
Quantifying Uncertainty in Deep Spatiotemporal Forecasting
Dongxian Wu
Liyao (Mars) Gao
X. Xiong
Matteo Chinazzi
Alessandro Vespignani
Yi-An Ma
Rose Yu
AI4TS
66
71
0
25 May 2021
Global canopy height regression and uncertainty estimation from GEDI
  LIDAR waveforms with deep ensembles
Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles
Nico Lang
Nikolai Kalischek
J. Armston
Konrad Schindler
R. Dubayah
Jan Dirk Wegner
23
164
0
05 Mar 2021
Applications of deep learning in traffic congestion detection,
  prediction and alleviation: A survey
Applications of deep learning in traffic congestion detection, prediction and alleviation: A survey
Nishant Kumar
Martin Raubal
AI4TS
AI4CE
105
89
0
19 Feb 2021
Uncertainty Intervals for Graph-based Spatio-Temporal Traffic Prediction
Uncertainty Intervals for Graph-based Spatio-Temporal Traffic Prediction
Tijs Maas
Peter Bloem
AI4TS
42
5
0
09 Dec 2020
Better Aggregation in Test-Time Augmentation
Better Aggregation in Test-Time Augmentation
Divya Shanmugam
Davis W. Blalock
Guha Balakrishnan
John Guttag
ViT
54
148
0
23 Nov 2020
A Review of Uncertainty Quantification in Deep Learning: Techniques,
  Applications and Challenges
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDL
UQCV
256
1,911
0
12 Nov 2020
U-Net and its variants for medical image segmentation: theory and
  applications
U-Net and its variants for medical image segmentation: theory and applications
N. Siddique
Sidike Paheding
Colin P. Elkin
Vijay Devabhaktuni
SSeg
55
1,074
0
02 Nov 2020
Bayesian Deep Learning via Subnetwork Inference
Bayesian Deep Learning via Subnetwork Inference
Erik A. Daxberger
Eric T. Nalisnick
J. Allingham
Javier Antorán
José Miguel Hernández-Lobato
UQCV
BDL
56
85
0
28 Oct 2020
Empirical Frequentist Coverage of Deep Learning Uncertainty
  Quantification Procedures
Empirical Frequentist Coverage of Deep Learning Uncertainty Quantification Procedures
Benjamin Kompa
Jasper Snoek
Andrew L. Beam
UQCV
BDL
43
29
0
06 Oct 2020
Hyperparameter Ensembles for Robustness and Uncertainty Quantification
Hyperparameter Ensembles for Robustness and Uncertainty Quantification
F. Wenzel
Jasper Snoek
Dustin Tran
Rodolphe Jenatton
UQCV
50
209
0
24 Jun 2020
Array Programming with NumPy
Array Programming with NumPy
Charles R. Harris
K. Millman
S. Walt
R. Gommers
Pauli Virtanen
...
Tyler Reddy
Warren Weckesser
Hameer Abbasi
C. Gohlke
T. Oliphant
131
14,883
0
18 Jun 2020
How to Build a Graph-Based Deep Learning Architecture in Traffic Domain:
  A Survey
How to Build a Graph-Based Deep Learning Architecture in Traffic Domain: A Survey
Jiexia Ye
Juanjuan Zhao
Kejiang Ye
Chengzhong Xu
GNN
AI4TS
AI4CE
68
195
0
24 May 2020
Interval Neural Networks: Uncertainty Scores
Interval Neural Networks: Uncertainty Scores
Luis Oala
Cosmas Heiß
Jan Macdonald
M. März
Wojciech Samek
Gitta Kutyniok
UQCV
52
25
0
25 Mar 2020
A general framework for ensemble distribution distillation
A general framework for ensemble distribution distillation
Jakob Lindqvist
Amanda Olmin
Fredrik Lindsten
Lennart Svensson
FedML
UQCV
BDL
34
19
0
26 Feb 2020
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
UQCV
77
285
0
24 Feb 2020
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
A. Wilson
Pavel Izmailov
UQCV
BDL
OOD
72
652
0
20 Feb 2020
BatchEnsemble: An Alternative Approach to Efficient Ensemble and
  Lifelong Learning
BatchEnsemble: An Alternative Approach to Efficient Ensemble and Lifelong Learning
Yeming Wen
Dustin Tran
Jimmy Ba
OOD
FedML
UQCV
139
491
0
17 Feb 2020
UNet++: Redesigning Skip Connections to Exploit Multiscale Features in
  Image Segmentation
UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation
Zongwei Zhou
M. R. Siddiquee
Nima Tajbakhsh
Jianming Liang
SSeg
117
2,617
0
11 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
361
42,299
0
03 Dec 2019
Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction
  to Concepts and Methods
Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods
Eyke Hüllermeier
Willem Waegeman
PER
UD
202
1,405
0
21 Oct 2019
Sampling-free Epistemic Uncertainty Estimation Using Approximated
  Variance Propagation
Sampling-free Epistemic Uncertainty Estimation Using Approximated Variance Propagation
Janis Postels
Francesco Ferroni
Huseyin Coskun
Nassir Navab
Federico Tombari
UQCV
UD
PER
BDL
111
139
0
01 Aug 2019
A General Framework for Uncertainty Estimation in Deep Learning
A General Framework for Uncertainty Estimation in Deep Learning
Antonio Loquercio
Mattia Segu
Davide Scaramuzza
UQCV
BDL
OOD
58
293
0
16 Jul 2019
DropConnect Is Effective in Modeling Uncertainty of Bayesian Deep
  Networks
DropConnect Is Effective in Modeling Uncertainty of Bayesian Deep Networks
Aryan Mobiny
H. Nguyen
S. Moulik
Naveen Garg
Carol C. Wu
UQCV
BDL
47
161
0
07 Jun 2019
Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer
  Vision
Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer Vision
Fredrik K. Gustafsson
Martin Danelljan
Thomas B. Schon
OOD
UQCV
BDL
64
299
0
04 Jun 2019
Evaluating and Calibrating Uncertainty Prediction in Regression Tasks
Evaluating and Calibrating Uncertainty Prediction in Regression Tasks
Dan Levi
Liran Gispan
Niv Giladi
Ethan Fetaya
UQCV
78
143
0
28 May 2019
STG2Seq: Spatial-temporal Graph to Sequence Model for Multi-step
  Passenger Demand Forecasting
STG2Seq: Spatial-temporal Graph to Sequence Model for Multi-step Passenger Demand Forecasting
Lei Bai
Lina Yao
S. Kanhere
Xianzhi Wang
Quan.Z Sheng
AI4TS
71
253
0
24 May 2019
Anomaly Detection in Road Traffic Using Visual Surveillance: A Survey
Anomaly Detection in Road Traffic Using Visual Surveillance: A Survey
Santhosh Kelathodi Kumaran
D. P. Dogra
P. Roy
44
135
0
24 Jan 2019
Heteroscedastic Gaussian processes for uncertainty modeling in
  large-scale crowdsourced traffic data
Heteroscedastic Gaussian processes for uncertainty modeling in large-scale crowdsourced traffic data
Filipe Rodrigues
Francisco Câmara Pereira
36
30
0
20 Dec 2018
Bayesian QuickNAT: Model Uncertainty in Deep Whole-Brain Segmentation
  for Structure-wise Quality Control
Bayesian QuickNAT: Model Uncertainty in Deep Whole-Brain Segmentation for Structure-wise Quality Control
Abhijit Guha Roy
Sailesh Conjeti
Nassir Navab
Christian Wachinger
UQCV
52
119
0
24 Nov 2018
Safe Reinforcement Learning with Model Uncertainty Estimates
Safe Reinforcement Learning with Model Uncertainty Estimates
Björn Lütjens
Michael Everett
Jonathan P. How
66
167
0
19 Oct 2018
Automatic Brain Tumor Segmentation using Convolutional Neural Networks
  with Test-Time Augmentation
Automatic Brain Tumor Segmentation using Convolutional Neural Networks with Test-Time Augmentation
Guotai Wang
Wenqi Li
Sebastien Ourselin
Tom Vercauteren
36
152
0
18 Oct 2018
Aleatoric uncertainty estimation with test-time augmentation for medical
  image segmentation with convolutional neural networks
Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks
Guotai Wang
Wenqi Li
Michael Aertsen
Jan Deprest
Sebastien Ourselin
Tom Vercauteren
UQCV
MedIm
OOD
143
591
0
19 Jul 2018
Understanding Batch Normalization
Understanding Batch Normalization
Johan Bjorck
Carla P. Gomes
B. Selman
Kilian Q. Weinberger
128
609
0
01 Jun 2018
Deep Reinforcement Learning in a Handful of Trials using Probabilistic
  Dynamics Models
Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models
Kurtland Chua
Roberto Calandra
R. McAllister
Sergey Levine
BDL
200
1,272
0
30 May 2018
Lightweight Probabilistic Deep Networks
Lightweight Probabilistic Deep Networks
Jochen Gast
Stefan Roth
UQCV
OOD
BDL
70
181
0
29 May 2018
Bayesian Uncertainty Estimation for Batch Normalized Deep Networks
Bayesian Uncertainty Estimation for Batch Normalized Deep Networks
Mattias Teye
Hossein Azizpour
Kevin Smith
BDL
UQCV
126
241
0
18 Feb 2018
Uncertainty Estimation via Stochastic Batch Normalization
Uncertainty Estimation via Stochastic Batch Normalization
Andrei Atanov
Arsenii Ashukha
Dmitry Molchanov
Kirill Neklyudov
Dmitry Vetrov
UQCV
BDL
62
47
0
13 Feb 2018
On Calibration of Modern Neural Networks
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
249
5,812
0
14 Jun 2017
Concrete Dropout
Concrete Dropout
Y. Gal
Jiri Hron
Alex Kendall
BDL
UQCV
155
590
0
22 May 2017
Snapshot Ensembles: Train 1, get M for free
Snapshot Ensembles: Train 1, get M for free
Gao Huang
Yixuan Li
Geoff Pleiss
Zhuang Liu
John E. Hopcroft
Kilian Q. Weinberger
OOD
FedML
UQCV
118
950
0
01 Apr 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer
  Vision?
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDL
OOD
UD
UQCV
PER
332
4,700
0
15 Mar 2017
12
Next