ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.05739
  4. Cited By
Zero Grads: Learning Local Surrogate Losses for Non-Differentiable
  Graphics
v1v2 (latest)

Zero Grads: Learning Local Surrogate Losses for Non-Differentiable Graphics

10 August 2023
Michael Fischer
Tobias Ritschel
ArXiv (abs)PDFHTML

Papers citing "Zero Grads: Learning Local Surrogate Losses for Non-Differentiable Graphics"

21 / 21 papers shown
Title
Differentiable Collision Detection: a Randomized Smoothing Approach
Differentiable Collision Detection: a Randomized Smoothing Approach
Louis Montaut
Quentin Le Lidec
Antoine Bambade
Vladimir Petrik
Josef Sivic
Justin Carpentier
78
29
0
19 Sep 2022
Autoinverse: Uncertainty Aware Inversion of Neural Networks
Autoinverse: Uncertainty Aware Inversion of Neural Networks
Navid Ansari
Hans-Peter Seidel
Nima Vahidi Ferdowsi
Vahid Babaei
BDL
57
13
0
29 Aug 2022
Node Graph Optimization Using Differentiable Proxies
Node Graph Optimization Using Differentiable Proxies
Yiwei Hu
Paul Guerrero
Miloš Hašan
Holly Rushmeier
Valentin Deschaintre
75
25
0
15 Jul 2022
Gradients are Not All You Need
Gradients are Not All You Need
Luke Metz
C. Freeman
S. Schoenholz
Tal Kachman
76
93
0
10 Nov 2021
Differentiable Rendering with Perturbed Optimizers
Differentiable Rendering with Perturbed Optimizers
Quentin Le Lidec
Ivan Laptev
Cordelia Schmid
Justin Carpentier
57
15
0
18 Oct 2021
Bundled Gradients through Contact via Randomized Smoothing
Bundled Gradients through Contact via Randomized Smoothing
H.J. Terry Suh
Tao Pang
Russ Tedrake
124
54
0
11 Sep 2021
PyGAD: An Intuitive Genetic Algorithm Python Library
PyGAD: An Intuitive Genetic Algorithm Python Library
A. Gad
ODLGPAI4CE
43
192
0
11 Jun 2021
Modular Primitives for High-Performance Differentiable Rendering
Modular Primitives for High-Performance Differentiable Rendering
S. Laine
Janne Hellsten
Tero Karras
Yeongho Seol
J. Lehtinen
Timo Aila
67
453
0
06 Nov 2020
DiffTune: Optimizing CPU Simulator Parameters with Learned
  Differentiable Surrogates
DiffTune: Optimizing CPU Simulator Parameters with Learned Differentiable Surrogates
Alex Renda
Yishen Chen
Charith Mendis
Michael Carbin
35
36
0
08 Oct 2020
Fourier Features Let Networks Learn High Frequency Functions in Low
  Dimensional Domains
Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains
Matthew Tancik
Pratul P. Srinivasan
B. Mildenhall
Sara Fridovich-Keil
N. Raghavan
Utkarsh Singhal
R. Ramamoorthi
Jonathan T. Barron
Ren Ng
124
2,421
0
18 Jun 2020
A Novel Evolution Strategy with Directional Gaussian Smoothing for
  Blackbox Optimization
A Novel Evolution Strategy with Directional Gaussian Smoothing for Blackbox Optimization
Jiaxin Zhang
Hoang Tran
Dan Lu
Guannan Zhang
69
17
0
07 Feb 2020
Deep Parametric Indoor Lighting Estimation
Deep Parametric Indoor Lighting Estimation
Marc-André Gardner
Yannick Hold-Geoffroy
Kalyan Sunkavalli
Christian Gagné
Jean-François Lalonde
3DPC3DV
55
132
0
19 Oct 2019
DiffTaichi: Differentiable Programming for Physical Simulation
DiffTaichi: Differentiable Programming for Physical Simulation
Yuanming Hu
Luke Anderson
Tzu-Mao Li
Qi Sun
N. Carr
Jonathan Ragan-Kelley
F. Durand
63
388
0
01 Oct 2019
Learning Surrogate Losses
Learning Surrogate Losses
Josif Grabocka
Randolf Scholz
Lars Schmidt-Thieme
54
42
0
24 May 2019
On the Spectral Bias of Neural Networks
On the Spectral Bias of Neural Networks
Nasim Rahaman
A. Baratin
Devansh Arpit
Felix Dräxler
Min Lin
Fred Hamprecht
Yoshua Bengio
Aaron Courville
154
1,451
0
22 Jun 2018
Flexible Neural Representation for Physics Prediction
Flexible Neural Representation for Physics Prediction
Damian Mrowca
Chengxu Zhuang
E. Wang
Nick Haber
Li Fei-Fei
J. Tenenbaum
Daniel L. K. Yamins
OCLAI4CE
70
249
0
21 Jun 2018
Neural 3D Mesh Renderer
Neural 3D Mesh Renderer
Hiroharu Kato
Yoshitaka Ushiku
Tatsuya Harada
3DV
73
1,046
0
20 Nov 2017
On Nesting Monte Carlo Estimators
On Nesting Monte Carlo Estimators
Tom Rainforth
R. Cornish
Hongseok Yang
Andrew Warrington
Frank Wood
99
132
0
18 Sep 2017
A Compositional Object-Based Approach to Learning Physical Dynamics
A Compositional Object-Based Approach to Learning Physical Dynamics
Michael Chang
T. Ullman
Antonio Torralba
J. Tenenbaum
AI4CEOCL
384
441
0
01 Dec 2016
The CMA Evolution Strategy: A Tutorial
The CMA Evolution Strategy: A Tutorial
N. Hansen
74
1,377
0
04 Apr 2016
Randomized Smoothing for Stochastic Optimization
Randomized Smoothing for Stochastic Optimization
John C. Duchi
Peter L. Bartlett
Martin J. Wainwright
102
288
0
22 Mar 2011
1