Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2308.05739
Cited By
v1
v2 (latest)
Zero Grads: Learning Local Surrogate Losses for Non-Differentiable Graphics
10 August 2023
Michael Fischer
Tobias Ritschel
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Zero Grads: Learning Local Surrogate Losses for Non-Differentiable Graphics"
21 / 21 papers shown
Title
Differentiable Collision Detection: a Randomized Smoothing Approach
Louis Montaut
Quentin Le Lidec
Antoine Bambade
Vladimir Petrik
Josef Sivic
Justin Carpentier
78
29
0
19 Sep 2022
Autoinverse: Uncertainty Aware Inversion of Neural Networks
Navid Ansari
Hans-Peter Seidel
Nima Vahidi Ferdowsi
Vahid Babaei
BDL
57
13
0
29 Aug 2022
Node Graph Optimization Using Differentiable Proxies
Yiwei Hu
Paul Guerrero
Miloš Hašan
Holly Rushmeier
Valentin Deschaintre
75
25
0
15 Jul 2022
Gradients are Not All You Need
Luke Metz
C. Freeman
S. Schoenholz
Tal Kachman
76
93
0
10 Nov 2021
Differentiable Rendering with Perturbed Optimizers
Quentin Le Lidec
Ivan Laptev
Cordelia Schmid
Justin Carpentier
57
15
0
18 Oct 2021
Bundled Gradients through Contact via Randomized Smoothing
H.J. Terry Suh
Tao Pang
Russ Tedrake
124
54
0
11 Sep 2021
PyGAD: An Intuitive Genetic Algorithm Python Library
A. Gad
ODL
GP
AI4CE
43
192
0
11 Jun 2021
Modular Primitives for High-Performance Differentiable Rendering
S. Laine
Janne Hellsten
Tero Karras
Yeongho Seol
J. Lehtinen
Timo Aila
67
453
0
06 Nov 2020
DiffTune: Optimizing CPU Simulator Parameters with Learned Differentiable Surrogates
Alex Renda
Yishen Chen
Charith Mendis
Michael Carbin
35
36
0
08 Oct 2020
Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains
Matthew Tancik
Pratul P. Srinivasan
B. Mildenhall
Sara Fridovich-Keil
N. Raghavan
Utkarsh Singhal
R. Ramamoorthi
Jonathan T. Barron
Ren Ng
124
2,421
0
18 Jun 2020
A Novel Evolution Strategy with Directional Gaussian Smoothing for Blackbox Optimization
Jiaxin Zhang
Hoang Tran
Dan Lu
Guannan Zhang
69
17
0
07 Feb 2020
Deep Parametric Indoor Lighting Estimation
Marc-André Gardner
Yannick Hold-Geoffroy
Kalyan Sunkavalli
Christian Gagné
Jean-François Lalonde
3DPC
3DV
55
132
0
19 Oct 2019
DiffTaichi: Differentiable Programming for Physical Simulation
Yuanming Hu
Luke Anderson
Tzu-Mao Li
Qi Sun
N. Carr
Jonathan Ragan-Kelley
F. Durand
63
388
0
01 Oct 2019
Learning Surrogate Losses
Josif Grabocka
Randolf Scholz
Lars Schmidt-Thieme
54
42
0
24 May 2019
On the Spectral Bias of Neural Networks
Nasim Rahaman
A. Baratin
Devansh Arpit
Felix Dräxler
Min Lin
Fred Hamprecht
Yoshua Bengio
Aaron Courville
154
1,451
0
22 Jun 2018
Flexible Neural Representation for Physics Prediction
Damian Mrowca
Chengxu Zhuang
E. Wang
Nick Haber
Li Fei-Fei
J. Tenenbaum
Daniel L. K. Yamins
OCL
AI4CE
70
249
0
21 Jun 2018
Neural 3D Mesh Renderer
Hiroharu Kato
Yoshitaka Ushiku
Tatsuya Harada
3DV
73
1,046
0
20 Nov 2017
On Nesting Monte Carlo Estimators
Tom Rainforth
R. Cornish
Hongseok Yang
Andrew Warrington
Frank Wood
99
132
0
18 Sep 2017
A Compositional Object-Based Approach to Learning Physical Dynamics
Michael Chang
T. Ullman
Antonio Torralba
J. Tenenbaum
AI4CE
OCL
384
441
0
01 Dec 2016
The CMA Evolution Strategy: A Tutorial
N. Hansen
74
1,377
0
04 Apr 2016
Randomized Smoothing for Stochastic Optimization
John C. Duchi
Peter L. Bartlett
Martin J. Wainwright
102
288
0
22 Mar 2011
1