Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2308.05701
Cited By
Exploring the Potential of World Models for Anomaly Detection in Autonomous Driving
10 August 2023
Daniel Bogdoll
Lukas Bosch
Tim Joseph
Helen Gremmelmaier
Yitian Yang
J. Marius Zöllner
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Exploring the Potential of World Models for Anomaly Detection in Autonomous Driving"
5 / 5 papers shown
Title
UMAD: Unsupervised Mask-Level Anomaly Detection for Autonomous Driving
Daniel Bogdoll
Noël Ollick
Tim Joseph
J. Marius Zöllner
37
1
0
10 Jun 2024
Delving into Multi-modal Multi-task Foundation Models for Road Scene Understanding: From Learning Paradigm Perspectives
Sheng Luo
Wei Chen
Wanxin Tian
Rui Liu
Luanxuan Hou
...
Ling Shao
Yi Yang
Bojun Gao
Qun Li
Guobin Wu
51
13
0
05 Feb 2024
Applications of Large Scale Foundation Models for Autonomous Driving
Yu Huang
Yue Chen
Zhu Li
ELM
AI4CE
LRM
ALM
LM&Ro
61
15
0
20 Nov 2023
Model-Based Imitation Learning for Urban Driving
Anthony Hu
Gianluca Corrado
Nicolas Griffiths
Zak Murez
Corina Gurau
Hudson Yeo
Alex Kendall
R. Cipolla
Jamie Shotton
112
135
0
14 Oct 2022
Description of Corner Cases in Automated Driving: Goals and Challenges
Daniel Bogdoll
Jasmin Breitenstein
Florian Heidecker
Maarten Bieshaar
Bernhard Sick
Tim Fingscheidt
J. Marius Zöllner
43
55
0
20 Sep 2021
1