Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2307.08175
Cited By
Multi-Objective Optimization of Performance and Interpretability of Tabular Supervised Machine Learning Models
17 July 2023
Lennart Schneider
B. Bischl
Janek Thomas
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Multi-Objective Optimization of Performance and Interpretability of Tabular Supervised Machine Learning Models"
22 / 22 papers shown
Title
Composite Feature Selection using Deep Ensembles
F. Imrie
Alexander Norcliffe
Pietro Lio
M. Schaar
69
12
0
01 Nov 2022
AMLB: an AutoML Benchmark
Pieter Gijsbers
Marcos L. P. Bueno
Stefan Coors
E. LeDell
Sébastien Poirier
Janek Thomas
B. Bischl
Joaquin Vanschoren
63
57
0
25 Jul 2022
Multi-Objective Hyperparameter Optimization in Machine Learning -- An Overview
Florian Karl
Tobias Pielok
Julia Moosbauer
Florian Pfisterer
Stefan Coors
...
Jakob Richter
Michel Lang
Eduardo C. Garrido-Merchán
Juergen Branke
B. Bischl
AI4CE
61
60
0
15 Jun 2022
Neural Basis Models for Interpretability
Filip Radenovic
Abhimanyu Dubey
D. Mahajan
FAtt
97
47
0
27 May 2022
Scalable Interpretability via Polynomials
Abhimanyu Dubey
Filip Radenovic
D. Mahajan
49
31
0
27 May 2022
A survey on multi-objective hyperparameter optimization algorithms for Machine Learning
A. Hernández
I. Nieuwenhuyse
Sebastian Rojas Gonzalez
49
102
0
23 Nov 2021
SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization
Marius Lindauer
Katharina Eggensperger
Matthias Feurer
André Biedenkapp
Difan Deng
C. Benjamins
Tim Ruhopf
René Sass
Frank Hutter
124
345
0
20 Sep 2021
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
231
493
0
13 Jul 2021
Revisiting Deep Learning Models for Tabular Data
Yu. V. Gorishniy
Ivan Rubachev
Valentin Khrulkov
Artem Babenko
LMTD
119
760
0
22 Jun 2021
Well-tuned Simple Nets Excel on Tabular Datasets
Arlind Kadra
Marius Lindauer
Frank Hutter
Josif Grabocka
46
197
0
21 Jun 2021
Tabular Data: Deep Learning is Not All You Need
Ravid Shwartz-Ziv
Amitai Armon
LMTD
159
1,269
0
06 Jun 2021
NODE-GAM: Neural Generalized Additive Model for Interpretable Deep Learning
C. Chang
R. Caruana
Anna Goldenberg
AI4CE
81
80
0
03 Jun 2021
GAMI-Net: An Explainable Neural Network based on Generalized Additive Models with Structured Interactions
Zebin Yang
Aijun Zhang
Agus Sudjianto
FAtt
150
128
0
16 Mar 2020
AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data
Nick Erickson
Jonas W. Mueller
Alexander Shirkov
Hang Zhang
Pedro Larroy
Mu Li
Alex Smola
LMTD
215
625
0
13 Mar 2020
Testing Monotonicity of Machine Learning Models
Arnab Sharma
Heike Wehrheim
57
9
0
27 Feb 2020
InterpretML: A Unified Framework for Machine Learning Interpretability
Harsha Nori
Samuel Jenkins
Paul Koch
R. Caruana
AI4CE
153
487
0
19 Sep 2019
Quantifying Model Complexity via Functional Decomposition for Better Post-Hoc Interpretability
Christoph Molnar
Giuseppe Casalicchio
B. Bischl
FAtt
44
60
0
08 Apr 2019
A Simple and Effective Model-Based Variable Importance Measure
Brandon M. Greenwell
Bradley C. Boehmke
Andrew J. McCarthy
FAtt
TDI
40
229
0
12 May 2018
Tunability: Importance of Hyperparameters of Machine Learning Algorithms
Philipp Probst
B. Bischl
A. Boulesteix
60
616
0
26 Feb 2018
Hyperparameter Importance Across Datasets
J. N. van Rijn
Frank Hutter
43
240
0
12 Oct 2017
OpenML Benchmarking Suites
B. Bischl
Giuseppe Casalicchio
Matthias Feurer
Pieter Gijsbers
Frank Hutter
Michel Lang
R. G. Mantovani
Jan N. van Rijn
Joaquin Vanschoren
VLM
ELM
89
162
0
11 Aug 2017
XGBoost: A Scalable Tree Boosting System
Tianqi Chen
Carlos Guestrin
809
38,961
0
09 Mar 2016
1