ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.08175
  4. Cited By
Multi-Objective Optimization of Performance and Interpretability of
  Tabular Supervised Machine Learning Models

Multi-Objective Optimization of Performance and Interpretability of Tabular Supervised Machine Learning Models

17 July 2023
Lennart Schneider
B. Bischl
Janek Thomas
ArXiv (abs)PDFHTML

Papers citing "Multi-Objective Optimization of Performance and Interpretability of Tabular Supervised Machine Learning Models"

22 / 22 papers shown
Title
Composite Feature Selection using Deep Ensembles
Composite Feature Selection using Deep Ensembles
F. Imrie
Alexander Norcliffe
Pietro Lio
M. Schaar
69
12
0
01 Nov 2022
AMLB: an AutoML Benchmark
AMLB: an AutoML Benchmark
Pieter Gijsbers
Marcos L. P. Bueno
Stefan Coors
E. LeDell
Sébastien Poirier
Janek Thomas
B. Bischl
Joaquin Vanschoren
63
57
0
25 Jul 2022
Multi-Objective Hyperparameter Optimization in Machine Learning -- An
  Overview
Multi-Objective Hyperparameter Optimization in Machine Learning -- An Overview
Florian Karl
Tobias Pielok
Julia Moosbauer
Florian Pfisterer
Stefan Coors
...
Jakob Richter
Michel Lang
Eduardo C. Garrido-Merchán
Juergen Branke
B. Bischl
AI4CE
61
60
0
15 Jun 2022
Neural Basis Models for Interpretability
Neural Basis Models for Interpretability
Filip Radenovic
Abhimanyu Dubey
D. Mahajan
FAtt
97
47
0
27 May 2022
Scalable Interpretability via Polynomials
Scalable Interpretability via Polynomials
Abhimanyu Dubey
Filip Radenovic
D. Mahajan
49
31
0
27 May 2022
A survey on multi-objective hyperparameter optimization algorithms for
  Machine Learning
A survey on multi-objective hyperparameter optimization algorithms for Machine Learning
A. Hernández
I. Nieuwenhuyse
Sebastian Rojas Gonzalez
49
102
0
23 Nov 2021
SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter
  Optimization
SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization
Marius Lindauer
Katharina Eggensperger
Matthias Feurer
André Biedenkapp
Difan Deng
C. Benjamins
Tim Ruhopf
René Sass
Frank Hutter
121
345
0
20 Sep 2021
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and
  Open Challenges
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
228
493
0
13 Jul 2021
Revisiting Deep Learning Models for Tabular Data
Revisiting Deep Learning Models for Tabular Data
Yu. V. Gorishniy
Ivan Rubachev
Valentin Khrulkov
Artem Babenko
LMTD
119
760
0
22 Jun 2021
Well-tuned Simple Nets Excel on Tabular Datasets
Well-tuned Simple Nets Excel on Tabular Datasets
Arlind Kadra
Marius Lindauer
Frank Hutter
Josif Grabocka
46
197
0
21 Jun 2021
Tabular Data: Deep Learning is Not All You Need
Tabular Data: Deep Learning is Not All You Need
Ravid Shwartz-Ziv
Amitai Armon
LMTD
159
1,269
0
06 Jun 2021
NODE-GAM: Neural Generalized Additive Model for Interpretable Deep
  Learning
NODE-GAM: Neural Generalized Additive Model for Interpretable Deep Learning
C. Chang
R. Caruana
Anna Goldenberg
AI4CE
81
80
0
03 Jun 2021
GAMI-Net: An Explainable Neural Network based on Generalized Additive
  Models with Structured Interactions
GAMI-Net: An Explainable Neural Network based on Generalized Additive Models with Structured Interactions
Zebin Yang
Aijun Zhang
Agus Sudjianto
FAtt
150
128
0
16 Mar 2020
AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data
AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data
Nick Erickson
Jonas W. Mueller
Alexander Shirkov
Hang Zhang
Pedro Larroy
Mu Li
Alex Smola
LMTD
210
625
0
13 Mar 2020
Testing Monotonicity of Machine Learning Models
Testing Monotonicity of Machine Learning Models
Arnab Sharma
Heike Wehrheim
57
9
0
27 Feb 2020
InterpretML: A Unified Framework for Machine Learning Interpretability
InterpretML: A Unified Framework for Machine Learning Interpretability
Harsha Nori
Samuel Jenkins
Paul Koch
R. Caruana
AI4CE
153
487
0
19 Sep 2019
Quantifying Model Complexity via Functional Decomposition for Better
  Post-Hoc Interpretability
Quantifying Model Complexity via Functional Decomposition for Better Post-Hoc Interpretability
Christoph Molnar
Giuseppe Casalicchio
B. Bischl
FAtt
44
60
0
08 Apr 2019
A Simple and Effective Model-Based Variable Importance Measure
A Simple and Effective Model-Based Variable Importance Measure
Brandon M. Greenwell
Bradley C. Boehmke
Andrew J. McCarthy
FAttTDI
40
229
0
12 May 2018
Tunability: Importance of Hyperparameters of Machine Learning Algorithms
Tunability: Importance of Hyperparameters of Machine Learning Algorithms
Philipp Probst
B. Bischl
A. Boulesteix
60
616
0
26 Feb 2018
Hyperparameter Importance Across Datasets
Hyperparameter Importance Across Datasets
J. N. van Rijn
Frank Hutter
43
240
0
12 Oct 2017
OpenML Benchmarking Suites
OpenML Benchmarking Suites
B. Bischl
Giuseppe Casalicchio
Matthias Feurer
Pieter Gijsbers
Frank Hutter
Michel Lang
R. G. Mantovani
Jan N. van Rijn
Joaquin Vanschoren
VLMELM
89
162
0
11 Aug 2017
XGBoost: A Scalable Tree Boosting System
XGBoost: A Scalable Tree Boosting System
Tianqi Chen
Carlos Guestrin
809
38,961
0
09 Mar 2016
1