ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.06816
  4. Cited By
Data-driven Nonlinear Parametric Model Order Reduction Framework using
  Deep Hierarchical Variational Autoencoder

Data-driven Nonlinear Parametric Model Order Reduction Framework using Deep Hierarchical Variational Autoencoder

10 July 2023
Sihun Lee
Sangmin Lee
Ki-Hyun Jang
Haeseong Cho
Sang-Joon Shin
ArXivPDFHTML

Papers citing "Data-driven Nonlinear Parametric Model Order Reduction Framework using Deep Hierarchical Variational Autoencoder"

9 / 9 papers shown
Title
$β$-Variational autoencoders and transformers for reduced-order
  modelling of fluid flows
βββ-Variational autoencoders and transformers for reduced-order modelling of fluid flows
Alberto Solera-Rico
Carlos Sanmiguel Vila
Miguel Gómez-López
Yuning Wang
Abdulrahman Almashjary
Scott T. M. Dawson
Ricardo Vinuesa
DRL
38
78
0
07 Apr 2023
Physics-aware Reduced-order Modeling of Transonic Flow via
  $β$-Variational Autoencoder
Physics-aware Reduced-order Modeling of Transonic Flow via βββ-Variational Autoencoder
Yu-Eop Kang
Sunwoong Yang
K. Yee
DRL
AI4CE
43
25
0
02 May 2022
Towards extraction of orthogonal and parsimonious non-linear modes from
  turbulent flows
Towards extraction of orthogonal and parsimonious non-linear modes from turbulent flows
Hamidreza Eivazi
S. L. C. Martínez
S. Hoyas
Ricardo Vinuesa
56
92
0
03 Sep 2021
Non-intrusive reduced order modeling of natural convection in porous
  media using convolutional autoencoders: comparison with linear subspace
  techniques
Non-intrusive reduced order modeling of natural convection in porous media using convolutional autoencoders: comparison with linear subspace techniques
T. Kadeethum
F. Ballarin
Y. Cho
Daniel O’Malley
H. Yoon
N. Bouklas
AI4CE
51
61
0
23 Jul 2021
A fast and accurate physics-informed neural network reduced order model
  with shallow masked autoencoder
A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder
Youngkyu Kim
Youngsoo Choi
David Widemann
T. Zohdi
AI4CE
32
191
0
25 Sep 2020
Tutorial: Deriving the Standard Variational Autoencoder (VAE) Loss
  Function
Tutorial: Deriving the Standard Variational Autoencoder (VAE) Loss Function
Stephen G. Odaibo
GAN
BDL
DRL
20
54
0
21 Jul 2019
Cyclical Annealing Schedule: A Simple Approach to Mitigating KL
  Vanishing
Cyclical Annealing Schedule: A Simple Approach to Mitigating KL Vanishing
Hao Fu
Chunyuan Li
Xiaodong Liu
Jianfeng Gao
Asli Celikyilmaz
Lawrence Carin
ODL
63
362
0
25 Mar 2019
Fast and Accurate Deep Network Learning by Exponential Linear Units
  (ELUs)
Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
Djork-Arné Clevert
Thomas Unterthiner
Sepp Hochreiter
196
5,502
0
23 Nov 2015
Generating Sentences from a Continuous Space
Generating Sentences from a Continuous Space
Samuel R. Bowman
Luke Vilnis
Oriol Vinyals
Andrew M. Dai
Rafal Jozefowicz
Samy Bengio
DRL
74
2,352
0
19 Nov 2015
1