ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.03217
  4. Cited By
Quantification of Uncertainty with Adversarial Models

Quantification of Uncertainty with Adversarial Models

6 July 2023
Kajetan Schweighofer
L. Aichberger
Mykyta Ielanskyi
Günter Klambauer
Sepp Hochreiter
    UQCV
ArXivPDFHTML

Papers citing "Quantification of Uncertainty with Adversarial Models"

21 / 21 papers shown
Title
Mechanistic Mode Connectivity
Mechanistic Mode Connectivity
Ekdeep Singh Lubana
Eric J. Bigelow
Robert P. Dick
David M. Krueger
Hidenori Tanaka
70
45
0
15 Nov 2022
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Javier Antorán
David Janz
J. Allingham
Erik A. Daxberger
Riccardo Barbano
Eric T. Nalisnick
José Miguel Hernández-Lobato
UQCV
BDL
56
29
0
17 Jun 2022
Which Shortcut Cues Will DNNs Choose? A Study from the Parameter-Space
  Perspective
Which Shortcut Cues Will DNNs Choose? A Study from the Parameter-Space Perspective
Luca Scimeca
Seong Joon Oh
Sanghyuk Chun
Michael Poli
Sangdoo Yun
OOD
452
50
0
06 Oct 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
148
1,129
0
07 Jul 2021
On the Practicality of Deterministic Epistemic Uncertainty
On the Practicality of Deterministic Epistemic Uncertainty
Janis Postels
Mattia Segu
Tao Sun
Luca Sieber
Luc Van Gool
Feng Yu
Federico Tombari
UQCV
49
60
0
01 Jul 2021
Laplace Redux -- Effortless Bayesian Deep Learning
Laplace Redux -- Effortless Bayesian Deep Learning
Erik A. Daxberger
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Matthias Bauer
Philipp Hennig
BDL
UQCV
119
305
0
28 Jun 2021
A Review of Uncertainty Quantification in Deep Learning: Techniques,
  Applications and Challenges
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDL
UQCV
167
1,893
0
12 Nov 2020
Scaling Hamiltonian Monte Carlo Inference for Bayesian Neural Networks
  with Symmetric Splitting
Scaling Hamiltonian Monte Carlo Inference for Bayesian Neural Networks with Symmetric Splitting
Adam D. Cobb
Brian Jalaian
BDL
37
76
0
14 Oct 2020
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep
  Learning
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning
Arsenii Ashukha
Alexander Lyzhov
Dmitry Molchanov
Dmitry Vetrov
UQCV
FedML
52
314
0
15 Feb 2020
Natural Adversarial Examples
Natural Adversarial Examples
Dan Hendrycks
Kevin Zhao
Steven Basart
Jacob Steinhardt
D. Song
OODD
157
1,454
0
16 Jul 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
133
1,677
0
06 Jun 2019
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Mingxing Tan
Quoc V. Le
3DV
MedIm
70
17,950
0
28 May 2019
Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning
Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning
Ruqi Zhang
Chunyuan Li
Jianyi Zhang
Changyou Chen
A. Wilson
BDL
52
275
0
11 Feb 2019
A Simple Baseline for Bayesian Uncertainty in Deep Learning
A Simple Baseline for Bayesian Uncertainty in Deep Learning
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
BDL
UQCV
71
801
0
07 Feb 2019
Predictive Uncertainty Estimation via Prior Networks
Predictive Uncertainty Estimation via Prior Networks
A. Malinin
Mark Gales
UD
BDL
EDL
UQCV
PER
158
907
0
28 Feb 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
116
8,807
0
25 Aug 2017
Evasion Attacks against Machine Learning at Test Time
Evasion Attacks against Machine Learning at Test Time
Battista Biggio
Igino Corona
Davide Maiorca
B. Nelson
Nedim Srndic
Pavel Laskov
Giorgio Giacinto
Fabio Roli
AAML
90
2,140
0
21 Aug 2017
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in
  Gaussian Process Hybrid Deep Networks
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
John Bradshaw
A. G. Matthews
Zoubin Ghahramani
BDL
AAML
83
171
0
08 Jul 2017
Snapshot Ensembles: Train 1, get M for free
Snapshot Ensembles: Train 1, get M for free
Gao Huang
Yixuan Li
Geoff Pleiss
Zhuang Liu
John E. Hopcroft
Kilian Q. Weinberger
OOD
FedML
UQCV
103
938
0
01 Apr 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
79
5,920
0
04 Mar 2017
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
150
14,831
1
21 Dec 2013
1