ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.13092
  4. Cited By
Squeeze, Recover and Relabel: Dataset Condensation at ImageNet Scale
  From A New Perspective
v1v2v3 (latest)

Squeeze, Recover and Relabel: Dataset Condensation at ImageNet Scale From A New Perspective

22 June 2023
Zeyuan Yin
Eric P. Xing
Zhiqiang Shen
    DD
ArXiv (abs)PDFHTMLGithub (128★)

Papers citing "Squeeze, Recover and Relabel: Dataset Condensation at ImageNet Scale From A New Perspective"

31 / 31 papers shown
Title
CONCORD: Concept-Informed Diffusion for Dataset Distillation
CONCORD: Concept-Informed Diffusion for Dataset Distillation
Jianyang Gu
Haonan Wang
Ruoxi Jia
Saeed Vahidian
Vyacheslav Kungurtsev
Wei Jiang
Yiran Chen
DiffMDD
922
0
0
23 May 2025
A Coreset Selection of Coreset Selection Literature: Introduction and Recent Advances
A Coreset Selection of Coreset Selection Literature: Introduction and Recent Advances
Brian B. Moser
Arundhati S. Shanbhag
Stanislav Frolov
Federico Raue
Joachim Folz
Andreas Dengel
250
0
0
23 May 2025
Taming Diffusion for Dataset Distillation with High Representativeness
Taming Diffusion for Dataset Distillation with High Representativeness
Lin Zhao
Yushu Wu
Xinru Jiang
Jianyang Gu
Yanzhi Wang
Xiaolin Xu
Pu Zhao
Xue Lin
DD
264
0
0
23 May 2025
A Large-Scale Study on Video Action Dataset Condensation
A Large-Scale Study on Video Action Dataset Condensation
Yang Chen
Sheng Guo
Bo Zheng
Limin Wang
DD
146
3
0
13 Mar 2025
Elucidating the Design Space of Dataset Condensation
Elucidating the Design Space of Dataset Condensation
Shitong Shao
Zikai Zhou
Huanran Chen
Zhiqiang Shen
DD
135
10
0
20 Jan 2025
Emphasizing Discriminative Features for Dataset Distillation in Complex Scenarios
Emphasizing Discriminative Features for Dataset Distillation in Complex Scenarios
Kai Wang
Zekai Li
Zhi-Qi Cheng
Samir Khaki
A. Sajedi
Ramakrishna Vedantam
Konstantinos N. Plataniotis
Alexander G. Hauptmann
Yang You
DD
135
5
0
22 Oct 2024
Dataset Distillation via Knowledge Distillation: Towards Efficient Self-Supervised Pre-Training of Deep Networks
Dataset Distillation via Knowledge Distillation: Towards Efficient Self-Supervised Pre-Training of Deep Networks
S. Joshi
Jiayi Ni
Baharan Mirzasoleiman
DD
173
2
0
03 Oct 2024
Distilling Long-tailed Datasets
Distilling Long-tailed Datasets
Zhenghao Zhao
Haoxuan Wang
Yuzhang Shang
Kai Wang
Yan Yan
DD
96
3
0
24 Aug 2024
Breaking Class Barriers: Efficient Dataset Distillation via Inter-Class Feature Compensator
Breaking Class Barriers: Efficient Dataset Distillation via Inter-Class Feature Compensator
Xin Zhang
Jiawei Du
Ping Liu
Joey Tianyi Zhou
DD
125
2
0
13 Aug 2024
A Label is Worth a Thousand Images in Dataset Distillation
A Label is Worth a Thousand Images in Dataset Distillation
Tian Qin
Zhiwei Deng
David Alvarez-Melis
DD
167
13
0
15 Jun 2024
Towards Adversarially Robust Dataset Distillation by Curvature Regularization
Towards Adversarially Robust Dataset Distillation by Curvature Regularization
Eric Xue
Yijiang Li
Haoyang Liu
Yifan Shen
Haohan Wang
Haohan Wang
DD
125
8
0
15 Mar 2024
Data Distillation: A Survey
Data Distillation: A Survey
Noveen Sachdeva
Julian McAuley
DD
88
78
0
11 Jan 2023
Scaling Up Dataset Distillation to ImageNet-1K with Constant Memory
Scaling Up Dataset Distillation to ImageNet-1K with Constant Memory
Justin Cui
Ruochen Wang
Si Si
Cho-Jui Hsieh
DD
100
143
0
19 Nov 2022
Dataset Distillation using Neural Feature Regression
Dataset Distillation using Neural Feature Regression
Yongchao Zhou
E. Nezhadarya
Jimmy Ba
DDFedML
86
159
0
01 Jun 2022
Dataset Condensation via Efficient Synthetic-Data Parameterization
Dataset Condensation via Efficient Synthetic-Data Parameterization
Jang-Hyun Kim
Jinuk Kim
Seong Joon Oh
Sangdoo Yun
Hwanjun Song
Joonhyun Jeong
Jung-Woo Ha
Hyun Oh Song
DD
502
168
0
30 May 2022
Dataset Distillation by Matching Training Trajectories
Dataset Distillation by Matching Training Trajectories
George Cazenavette
Tongzhou Wang
Antonio Torralba
Alexei A. Efros
Jun-Yan Zhu
FedMLDD
185
395
0
22 Mar 2022
A Fast Knowledge Distillation Framework for Visual Recognition
A Fast Knowledge Distillation Framework for Visual Recognition
Zhiqiang Shen
Eric P. Xing
VLM
93
49
0
02 Dec 2021
Dataset Condensation with Distribution Matching
Dataset Condensation with Distribution Matching
Bo Zhao
Hakan Bilen
DD
77
308
0
08 Oct 2021
Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion
Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion
Hongxu Yin
Pavlo Molchanov
Zhizhong Li
J. Álvarez
Arun Mallya
Derek Hoiem
N. Jha
Jan Kautz
84
569
0
18 Dec 2019
Momentum Contrast for Unsupervised Visual Representation Learning
Momentum Contrast for Unsupervised Visual Representation Learning
Kaiming He
Haoqi Fan
Yuxin Wu
Saining Xie
Ross B. Girshick
SSL
216
12,136
0
13 Nov 2019
Contrastive Multiview Coding
Contrastive Multiview Coding
Yonglong Tian
Dilip Krishnan
Phillip Isola
SSL
182
2,409
0
13 Jun 2019
CutMix: Regularization Strategy to Train Strong Classifiers with
  Localizable Features
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
Sangdoo Yun
Dongyoon Han
Seong Joon Oh
Sanghyuk Chun
Junsuk Choe
Y. Yoo
OOD
624
4,809
0
13 May 2019
Bag of Tricks for Image Classification with Convolutional Neural
  Networks
Bag of Tricks for Image Classification with Convolutional Neural Networks
Tong He
Zhi-Li Zhang
Hang Zhang
Zhongyue Zhang
Junyuan Xie
Mu Li
293
1,421
0
04 Dec 2018
Dataset Distillation
Dataset Distillation
Tongzhou Wang
Jun-Yan Zhu
Antonio Torralba
Alexei A. Efros
DD
94
297
0
27 Nov 2018
mixup: Beyond Empirical Risk Minimization
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
316
9,811
0
25 Oct 2017
A Downsampled Variant of ImageNet as an Alternative to the CIFAR
  datasets
A Downsampled Variant of ImageNet as an Alternative to the CIFAR datasets
P. Chrabaszcz
I. Loshchilov
Frank Hutter
SSegOOD
173
649
0
27 Jul 2017
Practical Coreset Constructions for Machine Learning
Practical Coreset Constructions for Machine Learning
Olivier Bachem
Mario Lucic
Andreas Krause
67
186
0
19 Mar 2017
Deep Learning and the Information Bottleneck Principle
Deep Learning and the Information Bottleneck Principle
Naftali Tishby
Noga Zaslavsky
DRL
220
1,595
0
09 Mar 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
467
43,347
0
11 Feb 2015
Deep Neural Networks are Easily Fooled: High Confidence Predictions for
  Unrecognizable Images
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Totti Nguyen
J. Yosinski
Jeff Clune
AAML
174
3,275
0
05 Dec 2014
Understanding Deep Image Representations by Inverting Them
Understanding Deep Image Representations by Inverting Them
Aravindh Mahendran
Andrea Vedaldi
FAtt
131
1,968
0
26 Nov 2014
1