ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.11943
  4. Cited By
Towards Understanding What Code Language Models Learned

Towards Understanding What Code Language Models Learned

20 June 2023
Toufique Ahmed
Dian Yu
Chen Huang
Cathy Wang
Prem Devanbu
Kenji Sagae
    ELM
ArXivPDFHTML

Papers citing "Towards Understanding What Code Language Models Learned"

11 / 11 papers shown
Title
ObscuraCoder: Powering Efficient Code LM Pre-Training Via Obfuscation Grounding
ObscuraCoder: Powering Efficient Code LM Pre-Training Via Obfuscation Grounding
Indraneil Paul
Haoyi Yang
Goran Glavas
Kristian Kersting
Iryna Gurevych
AAML
SyDa
46
0
0
27 Mar 2025
A Survey on Adversarial Machine Learning for Code Data: Realistic
  Threats, Countermeasures, and Interpretations
A Survey on Adversarial Machine Learning for Code Data: Realistic Threats, Countermeasures, and Interpretations
Yulong Yang
Haoran Fan
Chenhao Lin
Qian Li
Zhengyu Zhao
Chao Shen
Xiaohong Guan
AAML
48
0
0
12 Nov 2024
Do Current Language Models Support Code Intelligence for R Programming Language?
Do Current Language Models Support Code Intelligence for R Programming Language?
ZiXiao Zhao
Fatemeh H. Fard
ELM
44
0
0
10 Oct 2024
CodeGen2: Lessons for Training LLMs on Programming and Natural Languages
CodeGen2: Lessons for Training LLMs on Programming and Natural Languages
Erik Nijkamp
A. Ghobadzadeh
Caiming Xiong
Silvio Savarese
Yingbo Zhou
152
164
0
03 May 2023
Redundancy and Concept Analysis for Code-trained Language Models
Redundancy and Concept Analysis for Code-trained Language Models
Arushi Sharma
Zefu Hu
Christopher Quinn
Ali Jannesari
73
1
0
01 May 2023
SimSCOOD: Systematic Analysis of Out-of-Distribution Generalization in
  Fine-tuned Source Code Models
SimSCOOD: Systematic Analysis of Out-of-Distribution Generalization in Fine-tuned Source Code Models
Hossein Hajipour
Ning Yu
Cristian-Alexandru Staicu
Mario Fritz
OODD
24
4
0
10 Oct 2022
Training language models to follow instructions with human feedback
Training language models to follow instructions with human feedback
Long Ouyang
Jeff Wu
Xu Jiang
Diogo Almeida
Carroll L. Wainwright
...
Amanda Askell
Peter Welinder
Paul Christiano
Jan Leike
Ryan J. Lowe
OSLM
ALM
319
11,953
0
04 Mar 2022
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
Jason W. Wei
Xuezhi Wang
Dale Schuurmans
Maarten Bosma
Brian Ichter
F. Xia
Ed H. Chi
Quoc Le
Denny Zhou
LM&Ro
LRM
AI4CE
ReLM
382
8,495
0
28 Jan 2022
NOPE: A Corpus of Naturally-Occurring Presuppositions in English
NOPE: A Corpus of Naturally-Occurring Presuppositions in English
Alicia Parrish
Sebastian Schuster
Alex Warstadt
Omar Agha
Soo-hwan Lee
Zhuoye Zhao
Sam Bowman
Tal Linzen
LRM
38
23
0
14 Sep 2021
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding
  and Generation
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding and Generation
Shuai Lu
Daya Guo
Shuo Ren
Junjie Huang
Alexey Svyatkovskiy
...
Nan Duan
Neel Sundaresan
Shao Kun Deng
Shengyu Fu
Shujie Liu
ELM
201
853
0
09 Feb 2021
Semantic Robustness of Models of Source Code
Semantic Robustness of Models of Source Code
Goutham Ramakrishnan
Jordan Henkel
Zi Wang
Aws Albarghouthi
S. Jha
Thomas W. Reps
SILM
AAML
37
97
0
07 Feb 2020
1