Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2306.11650
Cited By
v1
v2
v3
v4 (latest)
FedNoisy: Federated Noisy Label Learning Benchmark
20 June 2023
Siqi Liang
Jintao Huang
Junyuan Hong
Dun Zeng
Jiayu Zhou
Zenglin Xu
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"FedNoisy: Federated Noisy Label Learning Benchmark"
50 / 52 papers shown
Title
Robust Federated Learning with Confidence-Weighted Filtering and GAN-Based Completion under Noisy and Incomplete Data
Alpaslan Gokcen
Ali Boyaci
FedML
79
0
0
14 May 2025
FNBench: Benchmarking Robust Federated Learning against Noisy Labels
Xuefeng Jiang
Jia Li
Nannan Wu
Z. F. Wu
Xujing Li
Sheng Sun
Gang Xu
Yansen Wang
Qi Li
Min Liu
FedML
79
3
0
10 May 2025
Federated Learning Client Pruning for Noisy Labels
Mahdi Morafah
Hojin Chang
Chong Chen
Bill Lin
90
1
0
11 Nov 2024
Federated Learning with Extremely Noisy Clients via Negative Distillation
Yang Lu
Lin Chen
Yonggang Zhang
Yiliang Zhang
Bo Han
Yiu-ming Cheung
Hanzi Wang
FedML
88
10
0
20 Dec 2023
Advocating for the Silent: Enhancing Federated Generalization for Non-Participating Clients
Zheshun Wu
Zenglin Xu
Dun Zeng
Qifan Wang
Jie Liu
FedML
84
1
0
11 Oct 2023
FedNoRo: Towards Noise-Robust Federated Learning by Addressing Class Imbalance and Label Noise Heterogeneity
Nannan Wu
Li Yu
Xue Jiang
Kwang-Ting Cheng
Zengqiang Yan
FedML
97
37
0
09 May 2023
A Privacy-Preserving Hybrid Federated Learning Framework for Financial Crime Detection
Haobo Zhang
Junyuan Hong
Fan Dong
Steve Drew
Liangjie Xue
Jiayu Zhou
FedML
76
17
0
07 Feb 2023
FedFA: Federated Learning with Feature Anchors to Align Features and Classifiers for Heterogeneous Data
Tailin Zhou
Jun Zhang
Danny H. K. Tsang
FedML
66
60
0
17 Nov 2022
FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in Realistic Healthcare Settings
Jean Ogier du Terrail
Samy Ayed
Edwige Cyffers
Felix Grimberg
Chaoyang He
...
Sai Praneeth Karimireddy
Marco Lorenzi
Giovanni Neglia
Marc Tommasi
M. Andreux
FedML
98
157
0
10 Oct 2022
FLAIR: Federated Learning Annotated Image Repository
Congzheng Song
Filip Granqvist
Kunal Talwar
FedML
67
28
0
18 Jul 2022
Communication-Efficient Robust Federated Learning with Noisy Labels
Junyi Li
Jian Pei
Heng Huang
FedML
83
18
0
11 Jun 2022
FedNoiL: A Simple Two-Level Sampling Method for Federated Learning with Noisy Labels
Zhuowei Wang
Dinesh Manocha
Guodong Long
Bo Han
Jing Jiang
FedML
100
19
0
20 May 2022
FedCorr: Multi-Stage Federated Learning for Label Noise Correction
Jingyi Xu
Zihan Chen
Tony Q.S. Quek
Kai Fong Ernest Chong
FedML
54
89
0
10 Apr 2022
Federated Learning Based on Dynamic Regularization
D. A. E. Acar
Yue Zhao
Ramon Matas Navarro
Matthew Mattina
P. Whatmough
Venkatesh Saligrama
FedML
76
781
0
08 Nov 2021
Federated Learning for Open Banking
Guodong Long
Yue Tan
Jing Jiang
Chengqi Zhang
AIFin
FedML
92
275
0
24 Aug 2021
FedLab: A Flexible Federated Learning Framework
Dun Zeng
Siqi Liang
Xiangjing Hu
Hui Wang
Zenglin Xu
FedML
66
115
0
24 Jul 2021
RobustFed: A Truth Inference Approach for Robust Federated Learning
Farnaz Tahmasebian
Jian Lou
Li Xiong
FedML
52
23
0
18 Jul 2021
An Experimental Study of Data Heterogeneity in Federated Learning Methods for Medical Imaging
Liangqiong Qu
N. Balachandar
D. Rubin
61
24
0
18 Jul 2021
Federated Noisy Client Learning
Huazhu Fu
Li Li
Bo Han
Chengzhong Xu
Ling Shao
FedML
76
26
0
24 Jun 2021
FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space
Quande Liu
Cheng Chen
J. Qin
Qi Dou
Pheng-Ann Heng
OOD
FedML
166
440
0
10 Mar 2021
Learning Deep Neural Networks under Agnostic Corrupted Supervision
Boyang Liu
Mengying Sun
Ding Wang
P. Tan
Jiayu Zhou
65
5
0
12 Feb 2021
Federated Learning on Non-IID Data Silos: An Experimental Study
Yue Liu
Yiqun Diao
Quan Chen
Bingsheng He
FedML
OOD
151
992
0
03 Feb 2021
Robust Federated Learning with Noisy Labels
Seunghan Yang
Hyoungseob Park
Junyoung Byun
Changick Kim
FedML
NoLa
56
80
0
03 Dec 2020
A Principled Approach to Data Valuation for Federated Learning
Tianhao Wang
Johannes Rausch
Ce Zhang
R. Jia
Basel Alomair
FedML
TDI
43
193
0
14 Sep 2020
Flower: A Friendly Federated Learning Research Framework
Daniel J. Beutel
Taner Topal
Akhil Mathur
Xinchi Qiu
Javier Fernandez-Marques
...
Lorenzo Sani
Kwing Hei Li
Titouan Parcollet
Pedro Porto Buarque de Gusmão
Nicholas D. Lane
FedML
136
815
0
28 Jul 2020
FedML: A Research Library and Benchmark for Federated Machine Learning
Chaoyang He
Songze Li
Jinhyun So
Xiao Zeng
Mi Zhang
...
Yang Liu
Ramesh Raskar
Qiang Yang
M. Annavaram
Salman Avestimehr
FedML
243
577
0
27 Jul 2020
Learning from Noisy Labels with Deep Neural Networks: A Survey
Hwanjun Song
Minseok Kim
Dongmin Park
Yooju Shin
Jae-Gil Lee
NoLa
111
993
0
16 Jul 2020
Normalized Loss Functions for Deep Learning with Noisy Labels
Xingjun Ma
Hanxun Huang
Yisen Wang
Simone Romano
S. Erfani
James Bailey
NoLa
73
445
0
24 Jun 2020
Federated Semi-Supervised Learning with Inter-Client Consistency & Disjoint Learning
Wonyong Jeong
Jaehong Yoon
Eunho Yang
Sung Ju Hwang
FedML
59
222
0
22 Jun 2020
DivideMix: Learning with Noisy Labels as Semi-supervised Learning
Junnan Li
R. Socher
Guosheng Lin
NoLa
107
1,034
0
18 Feb 2020
Federated Learning with Matched Averaging
Hongyi Wang
Mikhail Yurochkin
Yuekai Sun
Dimitris Papailiopoulos
Y. Khazaeni
FedML
121
1,129
0
15 Feb 2020
FOCUS: Dealing with Label Quality Disparity in Federated Learning
Yiqiang Chen
Xiaodong Yang
Xin Qin
Han Yu
Biao Chen
Zhiqi Shen
FedML
55
96
0
29 Jan 2020
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
266
6,285
0
10 Dec 2019
Deep learning with noisy labels: exploring techniques and remedies in medical image analysis
Davood Karimi
Haoran Dou
Simon K. Warfield
Ali Gholipour
NoLa
95
543
0
05 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
541
42,591
0
03 Dec 2019
Symmetric Cross Entropy for Robust Learning with Noisy Labels
Yisen Wang
Xingjun Ma
Zaiyi Chen
Yuan Luo
Jinfeng Yi
James Bailey
NoLa
96
904
0
16 Aug 2019
Bayesian Nonparametric Federated Learning of Neural Networks
Mikhail Yurochkin
Mayank Agarwal
S. Ghosh
Kristjan Greenewald
T. Hoang
Y. Khazaeni
FedML
129
730
0
28 May 2019
Unsupervised Label Noise Modeling and Loss Correction
Eric Arazo Sanchez
Diego Ortego
Paul Albert
Noel E. O'Connor
Kevin McGuinness
NoLa
90
615
0
25 Apr 2019
Robust Inference via Generative Classifiers for Handling Noisy Labels
Kimin Lee
Sukmin Yun
Kibok Lee
Honglak Lee
Yue Liu
Jinwoo Shin
NoLa
92
139
0
31 Jan 2019
LEAF: A Benchmark for Federated Settings
S. Caldas
Sai Meher Karthik Duddu
Peter Wu
Tian Li
Jakub Konecný
H. B. McMahan
Virginia Smith
Ameet Talwalkar
FedML
158
1,422
0
03 Dec 2018
Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels
Zhilu Zhang
M. Sabuncu
NoLa
85
2,610
0
20 May 2018
Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels
Bo Han
Quanming Yao
Xingrui Yu
Gang Niu
Miao Xu
Weihua Hu
Ivor Tsang
Masashi Sugiyama
NoLa
120
2,078
0
18 Apr 2018
Joint Optimization Framework for Learning with Noisy Labels
Daiki Tanaka
Daiki Ikami
T. Yamasaki
Kiyoharu Aizawa
NoLa
74
712
0
30 Mar 2018
Robust Loss Functions under Label Noise for Deep Neural Networks
Aritra Ghosh
Himanshu Kumar
P. Sastry
NoLa
OOD
78
959
0
27 Dec 2017
Deep Learning from Noisy Image Labels with Quality Embedding
Jiangchao Yao
Jiajie Wang
Ivor Tsang
Ya Zhang
Jun-wei Sun
Chengqi Zhang
Rui Zhang
NoLa
80
121
0
02 Nov 2017
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
289
9,803
0
25 Oct 2017
WebVision Database: Visual Learning and Understanding from Web Data
Wen Li
Limin Wang
Wei Li
E. Agustsson
Luc Van Gool
VLM
90
441
0
09 Aug 2017
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
348
4,635
0
10 Nov 2016
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
Giorgio Patrini
A. Rozza
A. Menon
Richard Nock
Zhuang Li
NoLa
115
1,458
0
13 Sep 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
406
17,593
0
17 Feb 2016
1
2
Next