The recent decade witnessed a surge of increase in financial crimes across
the public and private sectors, with an average cost of scams of 102mtofinancialinstitutionsin2022.Developingamechanismforbattlingfinancialcrimesisanimpendingtaskthatrequiresin−depthcollaborationfrommultipleinstitutions,andyetsuchcollaborationimposedsignificanttechnicalchallengesduetotheprivacyandsecurityrequirementsofdistributedfinancialdata.Forexample,considerthemodernpaymentnetworksystems,whichcangeneratemillionsoftransactionsperdayacrossalargenumberofglobalinstitutions.Trainingadetectionmodeloffraudulenttransactionsrequiresnotonlysecuredtransactionsbutalsotheprivateaccountactivitiesofthoseinvolvedineachtransactionfromcorrespondingbanksystems.Thedistributednatureofbothsamplesandfeaturespreventsmostexistinglearningsystemsfrombeingdirectlyadoptedtohandlethedataminingtask.Inthispaper,wecollectivelyaddressthesechallengesbyproposingahybridfederatedlearningsystemthatofferssecureandprivacy−awarelearningandinferenceforfinancialcrimedetection.Weconductextensiveempiricalstudiestoevaluatetheproposedframework′sdetectionperformanceandprivacy−protectioncapability,evaluatingitsrobustnessagainstcommonmaliciousattacksofcollaborativelearning.Wereleaseoursourcecodeathttps://github.com/illidanlab/HyFL.