ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.10128
  4. Cited By
Systematic Architectural Design of Scale Transformed Attention Condenser
  DNNs via Multi-Scale Class Representational Response Similarity Analysis

Systematic Architectural Design of Scale Transformed Attention Condenser DNNs via Multi-Scale Class Representational Response Similarity Analysis

16 June 2023
Andrew Hryniowski
Alexander Wong
ArXiv (abs)PDFHTML

Papers citing "Systematic Architectural Design of Scale Transformed Attention Condenser DNNs via Multi-Scale Class Representational Response Similarity Analysis"

19 / 19 papers shown
Title
Inter-layer Information Similarity Assessment of Deep Neural Networks
  Via Topological Similarity and Persistence Analysis of Data Neighbour
  Dynamics
Inter-layer Information Similarity Assessment of Deep Neural Networks Via Topological Similarity and Persistence Analysis of Data Neighbour Dynamics
Andrew Hryniowski
A. Wong
53
5
0
07 Dec 2020
TinySpeech: Attention Condensers for Deep Speech Recognition Neural
  Networks on Edge Devices
TinySpeech: Attention Condensers for Deep Speech Recognition Neural Networks on Edge Devices
A. Wong
M. Famouri
Maya Pavlova
Siddharth Surana
108
33
0
10 Aug 2020
Hierarchical nucleation in deep neural networks
Hierarchical nucleation in deep neural networks
Diego Doimo
Aldo Glielmo
A. Ansuini
Alessandro Laio
BDLAI4CE
45
32
0
07 Jul 2020
Intrinsic dimension of data representations in deep neural networks
Intrinsic dimension of data representations in deep neural networks
A. Ansuini
Alessandro Laio
Jakob H. Macke
D. Zoccolan
AI4CE
81
279
0
29 May 2019
Similarity of Neural Network Representations Revisited
Similarity of Neural Network Representations Revisited
Simon Kornblith
Mohammad Norouzi
Honglak Lee
Geoffrey E. Hinton
143
1,431
0
01 May 2019
Analyzing and Improving Representations with the Soft Nearest Neighbor
  Loss
Analyzing and Improving Representations with the Soft Nearest Neighbor Loss
Nicholas Frosst
Nicolas Papernot
Geoffrey E. Hinton
55
160
0
05 Feb 2019
FermiNets: Learning generative machines to generate efficient neural
  networks via generative synthesis
FermiNets: Learning generative machines to generate efficient neural networks via generative synthesis
A. Wong
M. Shafiee
Brendan Chwyl
Francis Li
32
64
0
17 Sep 2018
BAM: Bottleneck Attention Module
BAM: Bottleneck Attention Module
Jongchan Park
Sanghyun Woo
Joon-Young Lee
In So Kweon
83
1,043
0
17 Jul 2018
Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust
  Deep Learning
Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning
Nicolas Papernot
Patrick McDaniel
OODAAML
149
508
0
13 Mar 2018
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle
Michael Carbin
259
3,485
0
09 Mar 2018
MorphNet: Fast & Simple Resource-Constrained Structure Learning of Deep
  Networks
MorphNet: Fast & Simple Resource-Constrained Structure Learning of Deep Networks
A. Gordon
Elad Eban
Ofir Nachum
Bo Chen
Hao Wu
Tien-Ju Yang
Edward Choi
74
339
0
18 Nov 2017
Squeeze-and-Excitation Networks
Squeeze-and-Excitation Networks
Jie Hu
Li Shen
Samuel Albanie
Gang Sun
Enhua Wu
427
26,557
0
05 Sep 2017
A Downsampled Variant of ImageNet as an Alternative to the CIFAR
  datasets
A Downsampled Variant of ImageNet as an Alternative to the CIFAR datasets
P. Chrabaszcz
I. Loshchilov
Frank Hutter
SSegOOD
163
649
0
27 Jul 2017
Xception: Deep Learning with Depthwise Separable Convolutions
Xception: Deep Learning with Depthwise Separable Convolutions
François Chollet
MDEBDLPINN
1.4K
14,608
0
07 Oct 2016
Understanding intermediate layers using linear classifier probes
Understanding intermediate layers using linear classifier probes
Guillaume Alain
Yoshua Bengio
FAtt
175
957
0
05 Oct 2016
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets,
  Atrous Convolution, and Fully Connected CRFs
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
Liang-Chieh Chen
George Papandreou
Iasonas Kokkinos
Kevin Patrick Murphy
Alan Yuille
SSeg
267
18,267
0
02 Jun 2016
Quantized Convolutional Neural Networks for Mobile Devices
Quantized Convolutional Neural Networks for Mobile Devices
Jiaxiang Wu
Cong Leng
Yuhang Wang
Qinghao Hu
Jian Cheng
MQ
99
1,167
0
21 Dec 2015
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,426
0
10 Dec 2015
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
485
43,694
0
17 Sep 2014
1