ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1512.06473
21
1158

Quantized Convolutional Neural Networks for Mobile Devices

21 December 2015
Jiaxiang Wu
Cong Leng
Yuhang Wang
Qinghao Hu
Jian Cheng
    MQ
ArXivPDFHTML
Abstract

Recently, convolutional neural networks (CNN) have demonstrated impressive performance in various computer vision tasks. However, high performance hardware is typically indispensable for the application of CNN models due to the high computation complexity, which prohibits their further extensions. In this paper, we propose an efficient framework, namely Quantized CNN, to simultaneously speed-up the computation and reduce the storage and memory overhead of CNN models. Both filter kernels in convolutional layers and weighting matrices in fully-connected layers are quantized, aiming at minimizing the estimation error of each layer's response. Extensive experiments on the ILSVRC-12 benchmark demonstrate 4~6x speed-up and 15~20x compression with merely one percentage loss of classification accuracy. With our quantized CNN model, even mobile devices can accurately classify images within one second.

View on arXiv
Comments on this paper