ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.08842
  4. Cited By
ViP: A Differentially Private Foundation Model for Computer Vision

ViP: A Differentially Private Foundation Model for Computer Vision

15 June 2023
Yaodong Yu
Maziar Sanjabi
Yi Ma
Kamalika Chaudhuri
Chuan Guo
ArXivPDFHTML

Papers citing "ViP: A Differentially Private Foundation Model for Computer Vision"

11 / 11 papers shown
Title
Delving into Differentially Private Transformer
Delving into Differentially Private Transformer
Youlong Ding
Xueyang Wu
Yining Meng
Yonggang Luo
Hao Wang
Weike Pan
39
5
0
28 May 2024
Differentially Private Image Classification by Learning Priors from
  Random Processes
Differentially Private Image Classification by Learning Priors from Random Processes
Xinyu Tang
Ashwinee Panda
Vikash Sehwag
Prateek Mittal
23
20
0
08 Jun 2023
Do SSL Models Have Déjà Vu? A Case of Unintended Memorization in
  Self-supervised Learning
Do SSL Models Have Déjà Vu? A Case of Unintended Memorization in Self-supervised Learning
Casey Meehan
Florian Bordes
Pascal Vincent
Kamalika Chaudhuri
Chuan Guo
36
18
0
26 Apr 2023
Scalable and Efficient Training of Large Convolutional Neural Networks
  with Differential Privacy
Scalable and Efficient Training of Large Convolutional Neural Networks with Differential Privacy
Zhiqi Bu
Jialin Mao
Shiyun Xu
139
48
0
21 May 2022
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
322
7,457
0
11 Nov 2021
Differentially Private Fine-tuning of Language Models
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
134
350
0
13 Oct 2021
Opacus: User-Friendly Differential Privacy Library in PyTorch
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
168
350
0
25 Sep 2021
Pre-training without Natural Images
Pre-training without Natural Images
Hirokatsu Kataoka
Kazushige Okayasu
Asato Matsumoto
Eisuke Yamagata
Ryosuke Yamada
Nakamasa Inoue
Akio Nakamura
Y. Satoh
81
117
0
21 Jan 2021
Extracting Training Data from Large Language Models
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
290
1,824
0
14 Dec 2020
BYOL works even without batch statistics
BYOL works even without batch statistics
Pierre Harvey Richemond
Jean-Bastien Grill
Florent Altché
Corentin Tallec
Florian Strub
...
Samuel L. Smith
Soham De
Razvan Pascanu
Bilal Piot
Michal Valko
SSL
250
114
0
20 Oct 2020
Semantic Understanding of Scenes through the ADE20K Dataset
Semantic Understanding of Scenes through the ADE20K Dataset
Bolei Zhou
Hang Zhao
Xavier Puig
Tete Xiao
Sanja Fidler
Adela Barriuso
Antonio Torralba
SSeg
253
1,829
0
18 Aug 2016
1