Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2306.08757
Cited By
InfoDiffusion: Representation Learning Using Information Maximizing Diffusion Models
14 June 2023
Yingheng Wang
Yair Schiff
Aaron Gokaslan
Weishen Pan
Fei Wang
Chris De Sa
Volodymyr Kuleshov
DiffM
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"InfoDiffusion: Representation Learning Using Information Maximizing Diffusion Models"
30 / 30 papers shown
Title
On Designing Diffusion Autoencoders for Efficient Generation and Representation Learning
Magdalena Proszewska
Nikolay Malkin
N. Siddharth
DiffM
46
0
0
30 May 2025
Addressing degeneracies in latent interpolation for diffusion models
Erik Landolsi
Fredrik Kahl
DiffM
132
0
0
12 May 2025
Revisiting Diffusion Autoencoder Training for Image Reconstruction Quality
Pramook Khungurn
Sukit Seripanitkarn
Phonphrm Thawatdamrongkit
Supasorn Suwajanakorn
DiffM
126
0
0
30 Apr 2025
Patronus: Bringing Transparency to Diffusion Models with Prototypes
Nina Weng
Aasa Feragen
Siavash Bigdeli
DiffM
71
0
0
28 Mar 2025
Block Diffusion: Interpolating Between Autoregressive and Diffusion Language Models
Marianne Arriola
Aaron Gokaslan
Justin T Chiu
Zhihan Yang
Zhixuan Qi
Jiaqi Han
Subham Sekhar Sahoo
Volodymyr Kuleshov
DiffM
281
25
0
12 Mar 2025
Understanding Representation Dynamics of Diffusion Models via Low-Dimensional Modeling
Xiao Li
Zekai Zhang
Xiang Li
Siyi Chen
Zhihui Zhu
Peng Wang
Qing Qu
DiffM
191
1
0
09 Feb 2025
Generative Modeling on Lie Groups via Euclidean Generalized Score Matching
Marco Bertolini
Tuan Le
Djork-Arné Clevert
DiffM
191
0
0
04 Feb 2025
Disentangling Disentangled Representations: Towards Improved Latent Units via Diffusion Models
Youngjun Jun
Jiwoo Park
Kyobin Choo
Tae Eun Choi
Seong Jae Hwang
CoGe
119
0
0
31 Oct 2024
Hierarchical Clustering for Conditional Diffusion in Image Generation
Jorge da Silva Goncalves
Laura Manduchi
Moritz Vandenhirtz
Julia E. Vogt
DiffM
69
0
0
22 Oct 2024
Feature-guided score diffusion for sampling conditional densities
Zahra Kadkhodaie
S. Mallat
Eero P. Simoncelli
DiffM
90
0
0
15 Oct 2024
Unsupervised Representation Learning from Sparse Transformation Analysis
Yue Song
Thomas Anderson Keller
Yisong Yue
Pietro Perona
Max Welling
DRL
78
0
0
07 Oct 2024
Channel-aware Contrastive Conditional Diffusion for Multivariate Probabilistic Time Series Forecasting
Siyang Li
Yize Chen
Hui Xiong
DiffM
AI4TS
61
0
0
03 Oct 2024
Unsupervised Composable Representations for Audio
Giovanni Bindi
P. Esling
DiffM
OCL
CoGe
84
1
0
19 Aug 2024
Diffusion-Based Generation of Neural Activity from Disentangled Latent Codes
Jonathan D. McCart
Andrew R. Sedler
Christopher Versteeg
Domenick M. Mifsud
Mattia Rigotti-Thompson
C. Pandarinath
DiffM
SyDa
73
1
0
30 Jul 2024
DisCo-Diff: Enhancing Continuous Diffusion Models with Discrete Latents
Yilun Xu
Gabriele Corso
Tommi Jaakkola
Arash Vahdat
Karsten Kreis
104
14
0
03 Jul 2024
Diffusion Models and Representation Learning: A Survey
Michael Fuest
Pingchuan Ma
Ming Gui
Johannes S. Fischer
Vincent Tao Hu
Bjorn Ommer
DiffM
106
24
0
30 Jun 2024
Diffusion Bridge AutoEncoders for Unsupervised Representation Learning
Yeongmin Kim
Kwanghyeon Lee
Minsang Park
Byeonghu Na
Il-Chul Moon
DiffM
138
2
0
27 May 2024
ParamReL: Learning Parameter Space Representation via Progressively Encoding Bayesian Flow Networks
Zhangkai Wu
Xuhui Fan
Jin Li
Zhilin Zhao
Hui Chen
LongBing Cao
85
2
0
24 May 2024
Regularized Conditional Diffusion Model for Multi-Task Preference Alignment
Xudong Yu
Chenjia Bai
Haoran He
Changhong Wang
Xuelong Li
122
6
0
07 Apr 2024
Training Unbiased Diffusion Models From Biased Dataset
Yeongmin Kim
Byeonghu Na
Minsang Park
Joonho Jang
Dongjun Kim
Wanmo Kang
Il-Chul Moon
78
24
0
02 Mar 2024
Diffusion Model with Cross Attention as an Inductive Bias for Disentanglement
Tao Yang
Cuiling Lan
Yan Lu
Nanning Zheng
DiffM
82
6
0
15 Feb 2024
Denoising Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors
Wasu Top Piriyakulkij
Yingheng Wang
Volodymyr Kuleshov
DiffM
145
1
0
05 Jan 2024
Diffusion Models With Learned Adaptive Noise
Subham Sekhar Sahoo
Aaron Gokaslan
Christopher De Sa
Volodymyr Kuleshov
DiffM
120
16
0
20 Dec 2023
SODA: Bottleneck Diffusion Models for Representation Learning
Drew A. Hudson
Daniel Zoran
Mateusz Malinowski
Andrew Kyle Lampinen
Andrew Jaegle
James L. McClelland
Loic Matthey
Felix Hill
Alexander Lerchner
DiffM
110
56
0
29 Nov 2023
Self-Discovering Interpretable Diffusion Latent Directions for Responsible Text-to-Image Generation
Hang Li
Chengzhi Shen
Philip Torr
Volker Tresp
Jindong Gu
132
37
0
28 Nov 2023
IMPUS: Image Morphing with Perceptually-Uniform Sampling Using Diffusion Models
Zhaoyuan Yang
Zhengyang Yu
Zhiwei Xu
Jaskirat Singh
Jing Zhang
Dylan Campbell
Peter Tu
Richard Hartley
99
11
0
12 Nov 2023
Diffusion Based Causal Representation Learning
Amir Mohammad Karimi Mamaghan
Andrea Dittadi
Stefan Bauer
Karl Henrik Johansson
Francesco Quinzan
CML
DiffM
100
0
0
09 Nov 2023
DisDiff: Unsupervised Disentanglement of Diffusion Probabilistic Models
Tao Yang
Yuwang Wang
Yan Lv
Nanning Zh
DiffM
144
24
0
31 Jan 2023
Emerging Synergies in Causality and Deep Generative Models: A Survey
Guanglin Zhou
Shaoan Xie
Guang-Yuan Hao
Shiming Chen
Erdun Gao
Xiwei Xu
Chen Wang
Liming Zhu
Lina Yao
Kun Zhang
AI4CE
149
11
0
29 Jan 2023
Lossy Image Compression with Conditional Diffusion Models
Ruihan Yang
Stephan Mandt
DiffM
96
137
0
14 Sep 2022
1