ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.08757
  4. Cited By
InfoDiffusion: Representation Learning Using Information Maximizing
  Diffusion Models

InfoDiffusion: Representation Learning Using Information Maximizing Diffusion Models

14 June 2023
Yingheng Wang
Yair Schiff
Aaron Gokaslan
Weishen Pan
Fei Wang
Chris De Sa
Volodymyr Kuleshov
    DiffM
ArXiv (abs)PDFHTML

Papers citing "InfoDiffusion: Representation Learning Using Information Maximizing Diffusion Models"

30 / 30 papers shown
Title
On Designing Diffusion Autoencoders for Efficient Generation and Representation Learning
On Designing Diffusion Autoencoders for Efficient Generation and Representation Learning
Magdalena Proszewska
Nikolay Malkin
N. Siddharth
DiffM
46
0
0
30 May 2025
Addressing degeneracies in latent interpolation for diffusion models
Addressing degeneracies in latent interpolation for diffusion models
Erik Landolsi
Fredrik Kahl
DiffM
132
0
0
12 May 2025
Revisiting Diffusion Autoencoder Training for Image Reconstruction Quality
Revisiting Diffusion Autoencoder Training for Image Reconstruction Quality
Pramook Khungurn
Sukit Seripanitkarn
Phonphrm Thawatdamrongkit
Supasorn Suwajanakorn
DiffM
126
0
0
30 Apr 2025
Patronus: Bringing Transparency to Diffusion Models with Prototypes
Patronus: Bringing Transparency to Diffusion Models with Prototypes
Nina Weng
Aasa Feragen
Siavash Bigdeli
DiffM
71
0
0
28 Mar 2025
Block Diffusion: Interpolating Between Autoregressive and Diffusion Language Models
Block Diffusion: Interpolating Between Autoregressive and Diffusion Language Models
Marianne Arriola
Aaron Gokaslan
Justin T Chiu
Zhihan Yang
Zhixuan Qi
Jiaqi Han
Subham Sekhar Sahoo
Volodymyr Kuleshov
DiffM
281
25
0
12 Mar 2025
Understanding Representation Dynamics of Diffusion Models via Low-Dimensional Modeling
Understanding Representation Dynamics of Diffusion Models via Low-Dimensional Modeling
Xiao Li
Zekai Zhang
Xiang Li
Siyi Chen
Zhihui Zhu
Peng Wang
Qing Qu
DiffM
191
1
0
09 Feb 2025
Generative Modeling on Lie Groups via Euclidean Generalized Score Matching
Generative Modeling on Lie Groups via Euclidean Generalized Score Matching
Marco Bertolini
Tuan Le
Djork-Arné Clevert
DiffM
191
0
0
04 Feb 2025
Disentangling Disentangled Representations: Towards Improved Latent
  Units via Diffusion Models
Disentangling Disentangled Representations: Towards Improved Latent Units via Diffusion Models
Youngjun Jun
Jiwoo Park
Kyobin Choo
Tae Eun Choi
Seong Jae Hwang
CoGe
119
0
0
31 Oct 2024
Hierarchical Clustering for Conditional Diffusion in Image Generation
Hierarchical Clustering for Conditional Diffusion in Image Generation
Jorge da Silva Goncalves
Laura Manduchi
Moritz Vandenhirtz
Julia E. Vogt
DiffM
69
0
0
22 Oct 2024
Feature-guided score diffusion for sampling conditional densities
Feature-guided score diffusion for sampling conditional densities
Zahra Kadkhodaie
S. Mallat
Eero P. Simoncelli
DiffM
90
0
0
15 Oct 2024
Unsupervised Representation Learning from Sparse Transformation Analysis
Unsupervised Representation Learning from Sparse Transformation Analysis
Yue Song
Thomas Anderson Keller
Yisong Yue
Pietro Perona
Max Welling
DRL
78
0
0
07 Oct 2024
Channel-aware Contrastive Conditional Diffusion for Multivariate
  Probabilistic Time Series Forecasting
Channel-aware Contrastive Conditional Diffusion for Multivariate Probabilistic Time Series Forecasting
Siyang Li
Yize Chen
Hui Xiong
DiffMAI4TS
61
0
0
03 Oct 2024
Unsupervised Composable Representations for Audio
Unsupervised Composable Representations for Audio
Giovanni Bindi
P. Esling
DiffMOCLCoGe
84
1
0
19 Aug 2024
Diffusion-Based Generation of Neural Activity from Disentangled Latent
  Codes
Diffusion-Based Generation of Neural Activity from Disentangled Latent Codes
Jonathan D. McCart
Andrew R. Sedler
Christopher Versteeg
Domenick M. Mifsud
Mattia Rigotti-Thompson
C. Pandarinath
DiffMSyDa
73
1
0
30 Jul 2024
DisCo-Diff: Enhancing Continuous Diffusion Models with Discrete Latents
DisCo-Diff: Enhancing Continuous Diffusion Models with Discrete Latents
Yilun Xu
Gabriele Corso
Tommi Jaakkola
Arash Vahdat
Karsten Kreis
104
14
0
03 Jul 2024
Diffusion Models and Representation Learning: A Survey
Diffusion Models and Representation Learning: A Survey
Michael Fuest
Pingchuan Ma
Ming Gui
Johannes S. Fischer
Vincent Tao Hu
Bjorn Ommer
DiffM
106
24
0
30 Jun 2024
Diffusion Bridge AutoEncoders for Unsupervised Representation Learning
Diffusion Bridge AutoEncoders for Unsupervised Representation Learning
Yeongmin Kim
Kwanghyeon Lee
Minsang Park
Byeonghu Na
Il-Chul Moon
DiffM
138
2
0
27 May 2024
ParamReL: Learning Parameter Space Representation via Progressively
  Encoding Bayesian Flow Networks
ParamReL: Learning Parameter Space Representation via Progressively Encoding Bayesian Flow Networks
Zhangkai Wu
Xuhui Fan
Jin Li
Zhilin Zhao
Hui Chen
LongBing Cao
85
2
0
24 May 2024
Regularized Conditional Diffusion Model for Multi-Task Preference
  Alignment
Regularized Conditional Diffusion Model for Multi-Task Preference Alignment
Xudong Yu
Chenjia Bai
Haoran He
Changhong Wang
Xuelong Li
122
6
0
07 Apr 2024
Training Unbiased Diffusion Models From Biased Dataset
Training Unbiased Diffusion Models From Biased Dataset
Yeongmin Kim
Byeonghu Na
Minsang Park
Joonho Jang
Dongjun Kim
Wanmo Kang
Il-Chul Moon
78
24
0
02 Mar 2024
Diffusion Model with Cross Attention as an Inductive Bias for
  Disentanglement
Diffusion Model with Cross Attention as an Inductive Bias for Disentanglement
Tao Yang
Cuiling Lan
Yan Lu
Nanning Zheng
DiffM
82
6
0
15 Feb 2024
Denoising Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors
Denoising Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors
Wasu Top Piriyakulkij
Yingheng Wang
Volodymyr Kuleshov
DiffM
145
1
0
05 Jan 2024
Diffusion Models With Learned Adaptive Noise
Diffusion Models With Learned Adaptive Noise
Subham Sekhar Sahoo
Aaron Gokaslan
Christopher De Sa
Volodymyr Kuleshov
DiffM
120
16
0
20 Dec 2023
SODA: Bottleneck Diffusion Models for Representation Learning
SODA: Bottleneck Diffusion Models for Representation Learning
Drew A. Hudson
Daniel Zoran
Mateusz Malinowski
Andrew Kyle Lampinen
Andrew Jaegle
James L. McClelland
Loic Matthey
Felix Hill
Alexander Lerchner
DiffM
110
56
0
29 Nov 2023
Self-Discovering Interpretable Diffusion Latent Directions for
  Responsible Text-to-Image Generation
Self-Discovering Interpretable Diffusion Latent Directions for Responsible Text-to-Image Generation
Hang Li
Chengzhi Shen
Philip Torr
Volker Tresp
Jindong Gu
132
37
0
28 Nov 2023
IMPUS: Image Morphing with Perceptually-Uniform Sampling Using Diffusion
  Models
IMPUS: Image Morphing with Perceptually-Uniform Sampling Using Diffusion Models
Zhaoyuan Yang
Zhengyang Yu
Zhiwei Xu
Jaskirat Singh
Jing Zhang
Dylan Campbell
Peter Tu
Richard Hartley
99
11
0
12 Nov 2023
Diffusion Based Causal Representation Learning
Diffusion Based Causal Representation Learning
Amir Mohammad Karimi Mamaghan
Andrea Dittadi
Stefan Bauer
Karl Henrik Johansson
Francesco Quinzan
CMLDiffM
100
0
0
09 Nov 2023
DisDiff: Unsupervised Disentanglement of Diffusion Probabilistic Models
DisDiff: Unsupervised Disentanglement of Diffusion Probabilistic Models
Tao Yang
Yuwang Wang
Yan Lv
Nanning Zh
DiffM
144
24
0
31 Jan 2023
Emerging Synergies in Causality and Deep Generative Models: A Survey
Emerging Synergies in Causality and Deep Generative Models: A Survey
Guanglin Zhou
Shaoan Xie
Guang-Yuan Hao
Shiming Chen
Erdun Gao
Xiwei Xu
Chen Wang
Liming Zhu
Lina Yao
Kun Zhang
AI4CE
149
11
0
29 Jan 2023
Lossy Image Compression with Conditional Diffusion Models
Lossy Image Compression with Conditional Diffusion Models
Ruihan Yang
Stephan Mandt
DiffM
96
137
0
14 Sep 2022
1