ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.19377
  4. Cited By
Benign Overfitting in Deep Neural Networks under Lazy Training

Benign Overfitting in Deep Neural Networks under Lazy Training

30 May 2023
Zhenyu Zhu
Fanghui Liu
Grigorios G. Chrysos
Francesco Locatello
V. Cevher
    AI4CE
ArXivPDFHTML

Papers citing "Benign Overfitting in Deep Neural Networks under Lazy Training"

8 / 8 papers shown
Title
Class-wise Activation Unravelling the Engima of Deep Double Descent
Class-wise Activation Unravelling the Engima of Deep Double Descent
Yufei Gu
36
0
0
13 May 2024
Can overfitted deep neural networks in adversarial training generalize?
  -- An approximation viewpoint
Can overfitted deep neural networks in adversarial training generalize? -- An approximation viewpoint
Zhongjie Shi
Fanghui Liu
Yuan Cao
Johan A. K. Suykens
32
0
0
24 Jan 2024
The Surprising Harmfulness of Benign Overfitting for Adversarial
  Robustness
The Surprising Harmfulness of Benign Overfitting for Adversarial Robustness
Yifan Hao
Tong Zhang
AAML
21
4
0
19 Jan 2024
On the Optimization and Generalization of Multi-head Attention
On the Optimization and Generalization of Multi-head Attention
Puneesh Deora
Rouzbeh Ghaderi
Hossein Taheri
Christos Thrampoulidis
MLT
47
33
0
19 Oct 2023
Going Beyond Linear Mode Connectivity: The Layerwise Linear Feature
  Connectivity
Going Beyond Linear Mode Connectivity: The Layerwise Linear Feature Connectivity
Zhanpeng Zhou
Yongyi Yang
Xiaojiang Yang
Junchi Yan
Wei Hu
36
26
0
17 Jul 2023
Tight bounds for minimum l1-norm interpolation of noisy data
Tight bounds for minimum l1-norm interpolation of noisy data
Guillaume Wang
Konstantin Donhauser
Fanny Yang
79
20
0
10 Nov 2021
Exploring Architectural Ingredients of Adversarially Robust Deep Neural
  Networks
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
46
100
0
07 Oct 2021
Foolish Crowds Support Benign Overfitting
Foolish Crowds Support Benign Overfitting
Niladri S. Chatterji
Philip M. Long
83
20
0
06 Oct 2021
1