ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.19366
  4. Cited By
Joint Bayesian Inference of Graphical Structure and Parameters with a
  Single Generative Flow Network
v1v2 (latest)

Joint Bayesian Inference of Graphical Structure and Parameters with a Single Generative Flow Network

30 May 2023
T. Deleu
Mizu Nishikawa-Toomey
Jithendaraa Subramanian
Nikolay Malkin
Laurent Charlin
Yoshua Bengio
    BDL
ArXiv (abs)PDFHTML

Papers citing "Joint Bayesian Inference of Graphical Structure and Parameters with a Single Generative Flow Network"

20 / 20 papers shown
Title
Causal Discovery via Bayesian Optimization
Bao Duong
Sunil Gupta
Thin Nguyen
147
0
0
28 Jan 2025
Adaptive teachers for amortized samplers
Adaptive teachers for amortized samplers
Minsu Kim
Sanghyeok Choi
Taeyoung Yun
Emmanuel Bengio
Leo Feng
Jarrid Rector-Brooks
Sungsoo Ahn
Jinkyoo Park
Nikolay Malkin
Yoshua Bengio
473
7
0
02 Oct 2024
Looking Backward: Retrospective Backward Synthesis for Goal-Conditioned GFlowNets
Looking Backward: Retrospective Backward Synthesis for Goal-Conditioned GFlowNets
Haoran He
C. Chang
Huazhe Xu
Ling Pan
174
7
0
03 Jun 2024
Investigating Generalization Behaviours of Generative Flow Networks
Investigating Generalization Behaviours of Generative Flow Networks
Lazar Atanackovic
Emmanuel Bengio
AI4CE
69
4
0
07 Feb 2024
GFlowNet-EM for learning compositional latent variable models
GFlowNet-EM for learning compositional latent variable models
J. E. Hu
Nikolay Malkin
Moksh Jain
Katie Everett
Alexandros Graikos
Yoshua Bengio
CoGe
89
40
0
13 Feb 2023
Better Training of GFlowNets with Local Credit and Incomplete
  Trajectories
Better Training of GFlowNets with Local Credit and Incomplete Trajectories
L. Pan
Nikolay Malkin
Dinghuai Zhang
Yoshua Bengio
92
71
0
03 Feb 2023
GFlowNets for AI-Driven Scientific Discovery
GFlowNets for AI-Driven Scientific Discovery
Moksh Jain
T. Deleu
Jason S. Hartford
Cheng-Hao Liu
Alex Hernandez-Garcia
Yoshua Bengio
AI4CE
78
55
0
01 Feb 2023
NODAGS-Flow: Nonlinear Cyclic Causal Structure Learning
NODAGS-Flow: Nonlinear Cyclic Causal Structure Learning
Muralikrishnna G. Sethuraman
Romain Lopez
Ramkumar Veppathur Mohan
Faramarz Fekri
Tommaso Biancalani
Jan-Christian Hütter
CML
71
12
0
04 Jan 2023
A Variational Perspective on Generative Flow Networks
A Variational Perspective on Generative Flow Networks
Heiko Zimmermann
Fredrik Lindsten
Jan-Willem van de Meent
C. A. Naesseth
84
35
0
14 Oct 2022
GFlowNets and variational inference
GFlowNets and variational inference
Nikolay Malkin
Salem Lahlou
T. Deleu
Xu Ji
J. E. Hu
Katie Everett
Dinghuai Zhang
Yoshua Bengio
BDL
198
88
0
02 Oct 2022
Amortized Inference for Causal Structure Learning
Amortized Inference for Causal Structure Learning
Lars Lorch
Scott Sussex
Jonas Rothfuss
Andreas Krause
Bernhard Schölkopf
CML
110
65
0
25 May 2022
Differentiable DAG Sampling
Differentiable DAG Sampling
Bertrand Charpentier
Simon Kibler
Stephan Günnemann
91
42
0
16 Mar 2022
Bayesian Structure Learning with Generative Flow Networks
Bayesian Structure Learning with Generative Flow Networks
T. Deleu
António Góis
Chris C. Emezue
M. Rankawat
Simon Lacoste-Julien
Stefan Bauer
Yoshua Bengio
BDL
98
156
0
28 Feb 2022
Variational Causal Networks: Approximate Bayesian Inference over Causal
  Structures
Variational Causal Networks: Approximate Bayesian Inference over Causal Structures
Yashas Annadani
Jonas Rothfuss
Alexandre Lacoste
Nino Scherrer
Anirudh Goyal
Yoshua Bengio
Stefan Bauer
BDLCML
79
48
0
14 Jun 2021
Flow Network based Generative Models for Non-Iterative Diverse Candidate
  Generation
Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation
Emmanuel Bengio
Moksh Jain
Maksym Korablyov
Doina Precup
Yoshua Bengio
103
336
0
08 Jun 2021
DiBS: Differentiable Bayesian Structure Learning
DiBS: Differentiable Bayesian Structure Learning
Lars Lorch
Jonas Rothfuss
Bernhard Schölkopf
Andreas Krause
67
90
0
25 May 2021
Optimal experimental design via Bayesian optimization: active causal
  structure learning for Gaussian process networks
Optimal experimental design via Bayesian optimization: active causal structure learning for Gaussian process networks
Julius von Kügelgen
Paul Kishan Rubenstein
Bernhard Schölkopf
Adrian Weller
CML
57
20
0
09 Oct 2019
Relational inductive biases, deep learning, and graph networks
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CENAI
769
3,131
0
04 Jun 2018
Stein Variational Gradient Descent: A General Purpose Bayesian Inference
  Algorithm
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
90
1,094
0
16 Aug 2016
Learning Bayesian Networks: The Combination of Knowledge and Statistical
  Data
Learning Bayesian Networks: The Combination of Knowledge and Statistical Data
David Heckerman
D. Geiger
D. M. Chickering
TPM
119
3,984
0
27 Feb 2013
1