Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.19366
Cited By
v1
v2 (latest)
Joint Bayesian Inference of Graphical Structure and Parameters with a Single Generative Flow Network
30 May 2023
T. Deleu
Mizu Nishikawa-Toomey
Jithendaraa Subramanian
Nikolay Malkin
Laurent Charlin
Yoshua Bengio
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Joint Bayesian Inference of Graphical Structure and Parameters with a Single Generative Flow Network"
20 / 20 papers shown
Title
Causal Discovery via Bayesian Optimization
Bao Duong
Sunil Gupta
Thin Nguyen
147
0
0
28 Jan 2025
Adaptive teachers for amortized samplers
Minsu Kim
Sanghyeok Choi
Taeyoung Yun
Emmanuel Bengio
Leo Feng
Jarrid Rector-Brooks
Sungsoo Ahn
Jinkyoo Park
Nikolay Malkin
Yoshua Bengio
473
7
0
02 Oct 2024
Looking Backward: Retrospective Backward Synthesis for Goal-Conditioned GFlowNets
Haoran He
C. Chang
Huazhe Xu
Ling Pan
174
7
0
03 Jun 2024
Investigating Generalization Behaviours of Generative Flow Networks
Lazar Atanackovic
Emmanuel Bengio
AI4CE
69
4
0
07 Feb 2024
GFlowNet-EM for learning compositional latent variable models
J. E. Hu
Nikolay Malkin
Moksh Jain
Katie Everett
Alexandros Graikos
Yoshua Bengio
CoGe
89
40
0
13 Feb 2023
Better Training of GFlowNets with Local Credit and Incomplete Trajectories
L. Pan
Nikolay Malkin
Dinghuai Zhang
Yoshua Bengio
92
71
0
03 Feb 2023
GFlowNets for AI-Driven Scientific Discovery
Moksh Jain
T. Deleu
Jason S. Hartford
Cheng-Hao Liu
Alex Hernandez-Garcia
Yoshua Bengio
AI4CE
78
55
0
01 Feb 2023
NODAGS-Flow: Nonlinear Cyclic Causal Structure Learning
Muralikrishnna G. Sethuraman
Romain Lopez
Ramkumar Veppathur Mohan
Faramarz Fekri
Tommaso Biancalani
Jan-Christian Hütter
CML
71
12
0
04 Jan 2023
A Variational Perspective on Generative Flow Networks
Heiko Zimmermann
Fredrik Lindsten
Jan-Willem van de Meent
C. A. Naesseth
84
35
0
14 Oct 2022
GFlowNets and variational inference
Nikolay Malkin
Salem Lahlou
T. Deleu
Xu Ji
J. E. Hu
Katie Everett
Dinghuai Zhang
Yoshua Bengio
BDL
198
88
0
02 Oct 2022
Amortized Inference for Causal Structure Learning
Lars Lorch
Scott Sussex
Jonas Rothfuss
Andreas Krause
Bernhard Schölkopf
CML
110
65
0
25 May 2022
Differentiable DAG Sampling
Bertrand Charpentier
Simon Kibler
Stephan Günnemann
91
42
0
16 Mar 2022
Bayesian Structure Learning with Generative Flow Networks
T. Deleu
António Góis
Chris C. Emezue
M. Rankawat
Simon Lacoste-Julien
Stefan Bauer
Yoshua Bengio
BDL
98
156
0
28 Feb 2022
Variational Causal Networks: Approximate Bayesian Inference over Causal Structures
Yashas Annadani
Jonas Rothfuss
Alexandre Lacoste
Nino Scherrer
Anirudh Goyal
Yoshua Bengio
Stefan Bauer
BDL
CML
79
48
0
14 Jun 2021
Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation
Emmanuel Bengio
Moksh Jain
Maksym Korablyov
Doina Precup
Yoshua Bengio
103
336
0
08 Jun 2021
DiBS: Differentiable Bayesian Structure Learning
Lars Lorch
Jonas Rothfuss
Bernhard Schölkopf
Andreas Krause
67
90
0
25 May 2021
Optimal experimental design via Bayesian optimization: active causal structure learning for Gaussian process networks
Julius von Kügelgen
Paul Kishan Rubenstein
Bernhard Schölkopf
Adrian Weller
CML
57
20
0
09 Oct 2019
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CE
NAI
769
3,131
0
04 Jun 2018
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
90
1,094
0
16 Aug 2016
Learning Bayesian Networks: The Combination of Knowledge and Statistical Data
David Heckerman
D. Geiger
D. M. Chickering
TPM
119
3,984
0
27 Feb 2013
1