ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.18435
  4. Cited By
Statistically Efficient Bayesian Sequential Experiment Design via
  Reinforcement Learning with Cross-Entropy Estimators
v1v2 (latest)

Statistically Efficient Bayesian Sequential Experiment Design via Reinforcement Learning with Cross-Entropy Estimators

29 May 2023
Tom Blau
Iadine Chadès
Amir Dezfouli
Daniel M. Steinberg
Edwin V. Bonilla
ArXiv (abs)PDFHTML

Papers citing "Statistically Efficient Bayesian Sequential Experiment Design via Reinforcement Learning with Cross-Entropy Estimators"

18 / 18 papers shown
Title
Modern Bayesian Experimental Design
Modern Bayesian Experimental Design
Tom Rainforth
Adam Foster
Desi R. Ivanova
Freddie Bickford-Smith
88
88
0
28 Feb 2023
Implicit Deep Adaptive Design: Policy-Based Experimental Design without
  Likelihoods
Implicit Deep Adaptive Design: Policy-Based Experimental Design without Likelihoods
Desi R. Ivanova
Adam Foster
Steven Kleinegesse
Michael U. Gutmann
Tom Rainforth
OffRL
117
48
0
03 Nov 2021
Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design
Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design
Adam Foster
Desi R. Ivanova
Ilyas Malik
Tom Rainforth
59
85
0
03 Mar 2021
Bayesian Experimental Design for Implicit Models by Mutual Information
  Neural Estimation
Bayesian Experimental Design for Implicit Models by Mutual Information Neural Estimation
Steven Kleinegesse
Michael U. Gutmann
76
66
0
19 Feb 2020
Learning Likelihoods with Conditional Normalizing Flows
Learning Likelihoods with Conditional Normalizing Flows
Christina Winkler
Daniel E. Worrall
Emiel Hoogeboom
Max Welling
TPM
241
226
0
29 Nov 2019
The frontier of simulation-based inference
The frontier of simulation-based inference
Kyle Cranmer
Johann Brehmer
Gilles Louppe
AI4CE
200
855
0
04 Nov 2019
Why Non-myopic Bayesian Optimization is Promising and How Far Should We
  Look-ahead? A Study via Rollout
Why Non-myopic Bayesian Optimization is Promising and How Far Should We Look-ahead? A Study via Rollout
Xubo Yue
Raed Al Kontar
86
38
0
04 Nov 2019
A Unified Stochastic Gradient Approach to Designing Bayesian-Optimal
  Experiments
A Unified Stochastic Gradient Approach to Designing Bayesian-Optimal Experiments
Adam Foster
M. Jankowiak
M. O'Meara
Yee Whye Teh
Tom Rainforth
BDL
67
61
0
01 Nov 2019
Conditioning by adaptive sampling for robust design
Conditioning by adaptive sampling for robust design
David H. Brookes
Hahnbeom Park
Jennifer Listgarten
94
199
0
29 Jan 2019
Deep Reinforcement Learning and the Deadly Triad
Deep Reinforcement Learning and the Deadly Triad
H. V. Hasselt
Yotam Doron
Florian Strub
Matteo Hessel
Nicolas Sonnerat
Joseph Modayil
OffRL
90
232
0
06 Dec 2018
Formal Limitations on the Measurement of Mutual Information
Formal Limitations on the Measurement of Mutual Information
David A. McAllester
K. Stratos
SSL
72
277
0
10 Nov 2018
Model-Based Active Exploration
Model-Based Active Exploration
Pranav Shyam
Wojciech Ja'skowski
Faustino J. Gomez
86
179
0
29 Oct 2018
Pyro: Deep Universal Probabilistic Programming
Pyro: Deep Universal Probabilistic Programming
Eli Bingham
Jonathan P. Chen
M. Jankowiak
F. Obermeyer
Neeraj Pradhan
Theofanis Karaletsos
Rohit Singh
Paul A. Szerlip
Paul Horsfall
Noah D. Goodman
BDLGP
158
1,057
0
18 Oct 2018
On Nesting Monte Carlo Estimators
On Nesting Monte Carlo Estimators
Tom Rainforth
R. Cornish
Hongseok Yang
Andrew Warrington
Frank Wood
125
132
0
18 Sep 2017
Deep Bayesian Active Learning with Image Data
Deep Bayesian Active Learning with Image Data
Y. Gal
Riashat Islam
Zoubin Ghahramani
BDLUQCV
75
1,739
0
08 Mar 2017
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
277
3,722
0
26 May 2016
Continuous control with deep reinforcement learning
Continuous control with deep reinforcement learning
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
N. Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
330
13,295
0
09 Sep 2015
Bayesian Active Learning for Classification and Preference Learning
Bayesian Active Learning for Classification and Preference Learning
N. Houlsby
Ferenc Huszár
Zoubin Ghahramani
M. Lengyel
130
915
0
24 Dec 2011
1