Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.17592
Cited By
v1
v2 (latest)
Approximation-Generalization Trade-offs under (Approximate) Group Equivariance
27 May 2023
Mircea Petrache
Shubhendu Trivedi
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Approximation-Generalization Trade-offs under (Approximate) Group Equivariance"
50 / 52 papers shown
Title
Learning (Approximately) Equivariant Networks via Constrained Optimization
Andrei Manolache
Luiz F.O. Chamon
Mathias Niepert
126
0
0
19 May 2025
AtlasD: Automatic Local Symmetry Discovery
Manu Bhat
Jonghyun Park
Jianke Yang
Nima Dehmamy
Robin Walters
Rose Yu
65
0
0
15 Apr 2025
PEnGUiN: Partially Equivariant Graph NeUral Networks for Sample Efficient MARL
Joshua McClellan
Greyson Brothers
Furong Huang
Pratap Tokekar
85
0
0
19 Mar 2025
Learning with Exact Invariances in Polynomial Time
Ashkan Soleymani
B. Tahmasebi
Stefanie Jegelka
Patrick Jaillet
248
0
0
27 Feb 2025
Approximate Equivariance in Reinforcement Learning
Jung Yeon Park
Sujay Bhatt
Sihan Zeng
Lawson L. S. Wong
Alec Koppel
Sumitra Ganesh
Robin Walters
96
1
0
06 Nov 2024
Does equivariance matter at scale?
Johann Brehmer
S. Behrends
P. D. Haan
Taco S. Cohen
106
15
0
30 Oct 2024
Relaxed Equivariance via Multitask Learning
Ahmed A. A. Elhag
T. Konstantin Rusch
Francesco Di Giovanni
Michael Bronstein
118
3
0
23 Oct 2024
Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks
Ashwin Samudre
Mircea Petrache
Brian D. Nord
Shubhendu Trivedi
151
2
0
18 Sep 2024
Improving Equivariant Model Training via Constraint Relaxation
Stefanos Pertigkiozoglou
Evangelos Chatzipantazis
Shubhendu Trivedi
Kostas Daniilidis
106
6
0
23 Aug 2024
Approximately Equivariant Neural Processes
Matthew Ashman
Cristiana-Diana Diaconu
Adrian Weller
W. Bruinsma
Richard E. Turner
BDL
91
1
0
19 Jun 2024
Learning equivariant tensor functions with applications to sparse vector recovery
Wilson Gregory
Josué Tonelli-Cueto
Nicholas F. Marshall
Andrew S. Lee
Soledad Villar
89
2
0
03 Jun 2024
Equivariant Machine Learning on Graphs with Nonlinear Spectral Filters
Ya-Wei Eileen Lin
Ronen Talmon
Ron Levie
87
0
0
03 Jun 2024
Symmetries in Overparametrized Neural Networks: A Mean-Field View
Javier Maass
Joaquin Fontbona
MLT
FedML
177
2
0
30 May 2024
Almost Equivariance via Lie Algebra Convolutions
Daniel McNeela
132
7
0
19 Oct 2023
Discovering Symmetry Breaking in Physical Systems with Relaxed Group Convolution
Rui Wang
E. Hofgard
Han Gao
Robin Walters
Tess E. Smidt
AI4CE
143
12
0
03 Oct 2023
Approximately Equivariant Graph Networks
Ningyuan Huang
Ron Levie
Soledad Villar
111
19
0
21 Aug 2023
The Exact Sample Complexity Gain from Invariances for Kernel Regression
B. Tahmasebi
Stefanie Jegelka
63
19
0
24 Mar 2023
Attending to Graph Transformers
Luis Muller
Mikhail Galkin
Christopher Morris
Ladislav Rampášek
104
93
0
08 Feb 2023
Towards fully covariant machine learning
Soledad Villar
D. Hogg
Weichi Yao
George A. Kevrekidis
Bernhard Schölkopf
AI4CE
106
11
0
31 Jan 2023
A PAC-Bayesian Generalization Bound for Equivariant Networks
Arash Behboodi
Gabriele Cesa
Taco S. Cohen
91
19
0
24 Oct 2022
Equivariant Transduction through Invariant Alignment
Jennifer C. White
Ryan Cotterell
81
4
0
22 Sep 2022
Unified Fourier-based Kernel and Nonlinearity Design for Equivariant Networks on Homogeneous Spaces
Yinshuang Xu
Jiahui Lei
Yan Sun
Kostas Daniilidis
88
20
0
16 Jun 2022
Relaxing Equivariance Constraints with Non-stationary Continuous Filters
Tycho F. A. van der Ouderaa
David W. Romero
Mark van der Wilk
88
37
0
14 Apr 2022
Sample Efficient Grasp Learning Using Equivariant Models
Xu Zhu
Dian Wang
Ondrej Biza
Guanang Su
Robin Walters
Robert Platt
DRL
151
70
0
18 Feb 2022
A Theory of PAC Learnability under Transformation Invariances
Hang Shao
Omar Montasser
Avrim Blum
80
21
0
15 Feb 2022
Approximately Equivariant Networks for Imperfectly Symmetric Dynamics
Rui Wang
Robin Walters
Rose Yu
127
82
0
28 Jan 2022
Residual Pathway Priors for Soft Equivariance Constraints
Marc Finzi
Gregory W. Benton
A. Wilson
BDL
UQCV
86
59
0
02 Dec 2021
Understanding the Generalization Benefit of Model Invariance from a Data Perspective
Sicheng Zhu
Bang An
Furong Huang
51
26
0
10 Nov 2021
Learning Partial Equivariances from Data
David W. Romero
Suhas Lohit
73
32
0
19 Oct 2021
Coordinate Independent Convolutional Networks -- Isometry and Gauge Equivariant Convolutions on Riemannian Manifolds
Maurice Weiler
Patrick Forré
E. Verlinde
Max Welling
64
84
0
10 Jun 2021
Provably Strict Generalisation Benefit for Invariance in Kernel Methods
Bryn Elesedy
88
27
0
04 Jun 2021
A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups
Marc Finzi
Max Welling
A. Wilson
169
198
0
19 Apr 2021
Learning with invariances in random features and kernel models
Song Mei
Theodor Misiakiewicz
Andrea Montanari
OOD
107
91
0
25 Feb 2021
Provably Strict Generalisation Benefit for Equivariant Models
Bryn Elesedy
Sheheryar Zaidi
AI4CE
96
88
0
20 Feb 2021
Truly shift-invariant convolutional neural networks
Anadi Chaman
Ivan Dokmanić
109
71
0
28 Nov 2020
Scale Equivariance Improves Siamese Tracking
Ivan Sosnovik
A. Moskalev
A. Smeulders
52
79
0
17 Jul 2020
On the Benefits of Invariance in Neural Networks
Clare Lyle
Mark van der Wilk
Marta Z. Kwiatkowska
Y. Gal
Benjamin Bloem-Reddy
OOD
BDL
84
96
0
01 May 2020
On Translation Invariance in CNNs: Convolutional Layers can Exploit Absolute Spatial Location
O. Kayhan
Jan van Gemert
339
237
0
16 Mar 2020
Directional Message Passing for Molecular Graphs
Johannes Klicpera
Janek Groß
Stephan Günnemann
151
881
0
06 Mar 2020
Improved Generalization Bounds of Group Invariant / Equivariant Deep Networks via Quotient Feature Spaces
Akiyoshi Sannai
Masaaki Imaizumi
M. Kawano
MLT
55
31
0
15 Oct 2019
B-Spline CNNs on Lie Groups
Erik J. Bekkers
AI4CE
103
131
0
26 Sep 2019
Cormorant: Covariant Molecular Neural Networks
Brandon M. Anderson
Truong-Son Hy
Risi Kondor
139
426
0
06 Jun 2019
Gauge Equivariant Convolutional Networks and the Icosahedral CNN
Taco S. Cohen
Maurice Weiler
Berkay Kicanaoglu
Max Welling
139
414
0
11 Feb 2019
Invariant and Equivariant Graph Networks
Haggai Maron
Heli Ben-Hamu
Nadav Shamir
Y. Lipman
176
508
0
24 Dec 2018
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLT
AI4CE
253
316
0
05 Nov 2018
On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups
Risi Kondor
Shubhendu Trivedi
MLT
173
500
0
11 Feb 2018
A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Networks
Behnam Neyshabur
Srinadh Bhojanapalli
Nathan Srebro
94
610
0
29 Jul 2017
Equivariance Through Parameter-Sharing
Siamak Ravanbakhsh
J. Schneider
Barnabás Póczós
120
258
0
27 Feb 2017
Generalization Error of Invariant Classifiers
Jure Sokolić
Raja Giryes
Guillermo Sapiro
M. Rodrigues
74
78
0
14 Oct 2016
Group Equivariant Convolutional Networks
Taco S. Cohen
Max Welling
BDL
215
1,949
0
24 Feb 2016
1
2
Next