Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.16150
Cited By
v1
v2
v3 (latest)
Unifying GANs and Score-Based Diffusion as Generative Particle Models
25 May 2023
Jean-Yves Franceschi
Mike Gartrell
Ludovic Dos Santos
Thibaut Issenhuth
Emmanuel de Bezenac
Mickaël Chen
A. Rakotomamonjy
DiffM
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Unifying GANs and Score-Based Diffusion as Generative Particle Models"
35 / 35 papers shown
Title
Differentially Private Gradient Flow based on the Sliced Wasserstein Distance
Ilana Sebag
Muni Sreenivas Pydi
Jean-Yves Franceschi
Alain Rakotomamonjy
Mike Gartrell
Jamal Atif
Alexandre Allauzen
71
3
0
13 Dec 2023
DiffEdit: Diffusion-based semantic image editing with mask guidance
Guillaume Couairon
Jakob Verbeek
Holger Schwenk
Matthieu Cord
DiffM
145
509
0
20 Oct 2022
Imagen Video: High Definition Video Generation with Diffusion Models
Jonathan Ho
William Chan
Chitwan Saharia
Jay Whang
Ruiqi Gao
...
Diederik P. Kingma
Ben Poole
Mohammad Norouzi
David J. Fleet
Tim Salimans
VGen
162
1,540
0
05 Oct 2022
Diffusion-GAN: Training GANs with Diffusion
Zhendong Wang
Huangjie Zheng
Pengcheng He
Weizhu Chen
Mingyuan Zhou
DiffM
67
233
0
05 Jun 2022
Elucidating the Design Space of Diffusion-Based Generative Models
Tero Karras
M. Aittala
Timo Aila
S. Laine
DiffM
210
2,018
0
01 Jun 2022
GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models
Alex Nichol
Prafulla Dhariwal
Aditya A. Ramesh
Pranav Shyam
Pamela Mishkin
Bob McGrew
Ilya Sutskever
Mark Chen
364
3,627
0
20 Dec 2021
Tackling the Generative Learning Trilemma with Denoising Diffusion GANs
Zhisheng Xiao
Karsten Kreis
Arash Vahdat
DiffM
100
558
0
15 Dec 2021
Variational Wasserstein gradient flow
JiaoJiao Fan
Qinsheng Zhang
Amirhossein Taghvaei
Yongxin Chen
138
57
0
04 Dec 2021
KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support
Pierre Glaser
Michael Arbel
Arthur Gretton
92
40
0
16 Jun 2021
A Neural Tangent Kernel Perspective of GANs
Jean-Yves Franceschi
Emmanuel de Bézenac
Ibrahim Ayed
Mickaël Chen
Sylvain Lamprier
Patrick Gallinari
79
27
0
10 Jun 2021
Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks
David Alvarez-Melis
Yair Schiff
Youssef Mroueh
80
57
0
01 Jun 2021
Large-Scale Wasserstein Gradient Flows
Petr Mokrov
Alexander Korotin
Lingxiao Li
Aude Genevay
Justin Solomon
Evgeny Burnaev
72
75
0
01 Jun 2021
Diffusion Models Beat GANs on Image Synthesis
Prafulla Dhariwal
Alex Nichol
263
7,933
0
11 May 2021
Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image Synthesis
Bingchen Liu
Yizhe Zhu
Kunpeng Song
Ahmed Elgammal
229
239
0
12 Jan 2021
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
353
6,566
0
26 Nov 2020
On the linearity of large non-linear models: when and why the tangent kernel is constant
Chaoyue Liu
Libin Zhu
M. Belkin
116
143
0
02 Oct 2020
Adversarial score matching and improved sampling for image generation
Alexia Jolicoeur-Martineau
Remi Piche-Taillefer
Rémi Tachet des Combes
Ioannis Mitliagkas
DiffM
71
126
0
11 Sep 2020
The limits of min-max optimization algorithms: convergence to spurious non-critical sets
Ya-Ping Hsieh
P. Mertikopoulos
Volkan Cevher
86
83
0
16 Jun 2020
The equivalence between Stein variational gradient descent and black-box variational inference
Casey Chu
Kentaro Minami
Kenji Fukumizu
38
7
0
04 Apr 2020
Your GAN is Secretly an Energy-based Model and You Should use Discriminator Driven Latent Sampling
Tong Che
Ruixiang Zhang
Jascha Narain Sohl-Dickstein
Hugo Larochelle
Liam Paull
Yuan Cao
Yoshua Bengio
DiffM
DRL
65
114
0
12 Mar 2020
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDa
DiffM
258
3,954
0
12 Jul 2019
Sliced Score Matching: A Scalable Approach to Density and Score Estimation
Yang Song
Sahaj Garg
Jiaxin Shi
Stefano Ermon
115
418
0
17 May 2019
Self-Attention Generative Adversarial Networks
Han Zhang
Ian Goodfellow
Dimitris N. Metaxas
Augustus Odena
GAN
151
3,731
0
21 May 2018
Stein Variational Gradient Descent as Gradient Flow
Qiang Liu
OT
86
277
0
25 Apr 2017
Improved Training of Wasserstein GANs
Ishaan Gulrajani
Faruk Ahmed
Martín Arjovsky
Vincent Dumoulin
Aaron Courville
GAN
227
9,560
0
31 Mar 2017
NIPS 2016 Tutorial: Generative Adversarial Networks
Ian Goodfellow
GAN
175
1,726
0
31 Dec 2016
Unrolled Generative Adversarial Networks
Luke Metz
Ben Poole
David Pfau
Jascha Narain Sohl-Dickstein
GAN
116
1,004
0
07 Nov 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
76
1,093
0
16 Aug 2016
Gaussian Error Linear Units (GELUs)
Dan Hendrycks
Kevin Gimpel
174
5,037
0
27 Jun 2016
f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
Sebastian Nowozin
Botond Cseke
Ryota Tomioka
GAN
156
1,659
0
02 Jun 2016
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GAN
OOD
271
14,023
0
19 Nov 2015
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
465
43,341
0
11 Feb 2015
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
247
8,426
0
28 Nov 2014
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OOD
SSL
274
12,458
0
24 Jun 2012
Hilbert space embeddings and metrics on probability measures
Bharath K. Sriperumbudur
Arthur Gretton
Kenji Fukumizu
Bernhard Schölkopf
Gert R. G. Lanckriet
217
747
0
30 Jul 2009
1