Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.14683
Cited By
On progressive sharpening, flat minima and generalisation
24 May 2023
L. MacDonald
Jack Valmadre
Simon Lucey
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On progressive sharpening, flat minima and generalisation"
21 / 21 papers shown
Title
On skip connections and normalisation layers in deep optimisation
L. MacDonald
Jack Valmadre
Hemanth Saratchandran
Simon Lucey
ODL
56
2
0
10 Oct 2022
Understanding Edge-of-Stability Training Dynamics with a Minimalist Example
Xingyu Zhu
Zixuan Wang
Xiang Wang
Mo Zhou
Rong Ge
98
37
0
07 Oct 2022
Analyzing Sharpness along GD Trajectory: Progressive Sharpening and Edge of Stability
Z. Li
Zixuan Wang
Jian Li
41
46
0
26 Jul 2022
Memorization and Optimization in Deep Neural Networks with Minimum Over-parameterization
Simone Bombari
Mohammad Hossein Amani
Marco Mondelli
53
26
0
20 May 2022
Understanding the unstable convergence of gradient descent
Kwangjun Ahn
J.N. Zhang
S. Sra
72
60
0
03 Apr 2022
A Universal Law of Robustness via Isoperimetry
Sébastien Bubeck
Mark Sellke
38
218
0
26 May 2021
Sharpness-Aware Minimization for Efficiently Improving Generalization
Pierre Foret
Ariel Kleiner
H. Mobahi
Behnam Neyshabur
AAML
184
1,345
0
03 Oct 2020
Relative Flatness and Generalization
Henning Petzka
Michael Kamp
Linara Adilova
C. Sminchisescu
Mario Boley
73
78
0
03 Jan 2020
Fantastic Generalization Measures and Where to Find Them
Yiding Jiang
Behnam Neyshabur
H. Mobahi
Dilip Krishnan
Samy Bengio
AI4CE
129
606
0
04 Dec 2019
Robust Learning with Jacobian Regularization
Judy Hoffman
Daniel A. Roberts
Sho Yaida
OOD
AAML
51
167
0
07 Aug 2019
Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks
Mahyar Fazlyab
Alexander Robey
Hamed Hassani
M. Morari
George J. Pappas
87
456
0
12 Jun 2019
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
214
1,270
0
04 Oct 2018
Regularisation of Neural Networks by Enforcing Lipschitz Continuity
Henry Gouk
E. Frank
Bernhard Pfahringer
M. Cree
170
477
0
12 Apr 2018
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
273
9,759
0
25 Oct 2017
Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance
Jonathan Niles-Weed
Francis R. Bach
187
421
0
01 Jul 2017
Spectrally-normalized margin bounds for neural networks
Peter L. Bartlett
Dylan J. Foster
Matus Telgarsky
ODL
199
1,217
0
26 Jun 2017
Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data
Gintare Karolina Dziugaite
Daniel M. Roy
106
813
0
31 Mar 2017
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
334
4,625
0
10 Nov 2016
Entropy-SGD: Biasing Gradient Descent Into Wide Valleys
Pratik Chaudhari
A. Choromańska
Stefano Soatto
Yann LeCun
Carlo Baldassi
C. Borgs
J. Chayes
Levent Sagun
R. Zecchina
ODL
94
773
0
06 Nov 2016
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
419
2,936
0
15 Sep 2016
Identity Mappings in Deep Residual Networks
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
350
10,180
0
16 Mar 2016
1