ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.14502
  4. Cited By
RetICL: Sequential Retrieval of In-Context Examples with Reinforcement
  Learning
v1v2 (latest)

RetICL: Sequential Retrieval of In-Context Examples with Reinforcement Learning

23 May 2023
Alexander Scarlatos
Andrew Lan
    OffRLLRM
ArXiv (abs)PDFHTML

Papers citing "RetICL: Sequential Retrieval of In-Context Examples with Reinforcement Learning"

22 / 22 papers shown
Title
In-Context Learning with Iterative Demonstration Selection
In-Context Learning with Iterative Demonstration Selection
Chengwei Qin
Aston Zhang
Chong Chen
Anirudh Dagar
Wenming Ye
LRM
147
54
0
31 Dec 2024
GraphIC: A Graph-Based In-Context Example Retrieval Model for Multi-Step Reasoning
GraphIC: A Graph-Based In-Context Example Retrieval Model for Multi-Step Reasoning
Jiale Fu
Yaqing Wang
Simeng Han
Jiaming Fan
Chen Si
119
1
0
03 Oct 2024
Diverse Demonstrations Improve In-context Compositional Generalization
Diverse Demonstrations Improve In-context Compositional Generalization
Itay Levy
Ben Bogin
Jonathan Berant
87
145
0
13 Dec 2022
Active Example Selection for In-Context Learning
Active Example Selection for In-Context Learning
Yiming Zhang
Shi Feng
Chenhao Tan
SILMLRM
101
205
0
08 Nov 2022
Complexity-Based Prompting for Multi-Step Reasoning
Complexity-Based Prompting for Multi-Step Reasoning
Yao Fu
Hao-Chun Peng
Ashish Sabharwal
Peter Clark
Tushar Khot
ReLMLRM
232
444
0
03 Oct 2022
Dynamic Prompt Learning via Policy Gradient for Semi-structured
  Mathematical Reasoning
Dynamic Prompt Learning via Policy Gradient for Semi-structured Mathematical Reasoning
Pan Lu
Liang Qiu
Kai-Wei Chang
Ying Nian Wu
Song-Chun Zhu
Tanmay Rajpurohit
Peter Clark
Ashwin Kalyan
ReLMLRM
169
296
0
29 Sep 2022
Selective Annotation Makes Language Models Better Few-Shot Learners
Selective Annotation Makes Language Models Better Few-Shot Learners
Hongjin Su
Jungo Kasai
Chen Henry Wu
Weijia Shi
Tianlu Wang
...
Rui Zhang
Mari Ostendorf
Luke Zettlemoyer
Noah A. Smith
Tao Yu
116
261
0
05 Sep 2022
Language Models (Mostly) Know What They Know
Language Models (Mostly) Know What They Know
Saurav Kadavath
Tom Conerly
Amanda Askell
T. Henighan
Dawn Drain
...
Nicholas Joseph
Benjamin Mann
Sam McCandlish
C. Olah
Jared Kaplan
ELM
122
830
0
11 Jul 2022
Solving Quantitative Reasoning Problems with Language Models
Solving Quantitative Reasoning Problems with Language Models
Aitor Lewkowycz
Anders Andreassen
David Dohan
Ethan Dyer
Henryk Michalewski
...
Theo Gutman-Solo
Yuhuai Wu
Behnam Neyshabur
Guy Gur-Ari
Vedant Misra
ReLMELMLRM
181
857
0
29 Jun 2022
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
Jason W. Wei
Xuezhi Wang
Dale Schuurmans
Maarten Bosma
Brian Ichter
F. Xia
Ed H. Chi
Quoc Le
Denny Zhou
LM&RoLRMAI4CEReLM
843
9,644
0
28 Jan 2022
Learning To Retrieve Prompts for In-Context Learning
Learning To Retrieve Prompts for In-Context Learning
Ohad Rubin
Jonathan Herzig
Jonathan Berant
VPVLMRALM
86
708
0
16 Dec 2021
Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods
  in Natural Language Processing
Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing
Pengfei Liu
Weizhe Yuan
Jinlan Fu
Zhengbao Jiang
Hiroaki Hayashi
Graham Neubig
VLMSyDa
224
3,989
0
28 Jul 2021
Evaluating Large Language Models Trained on Code
Evaluating Large Language Models Trained on Code
Mark Chen
Jerry Tworek
Heewoo Jun
Qiming Yuan
Henrique Pondé
...
Bob McGrew
Dario Amodei
Sam McCandlish
Ilya Sutskever
Wojciech Zaremba
ELMALM
236
5,647
0
07 Jul 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
584
4,084
0
18 Apr 2021
What Makes Good In-Context Examples for GPT-$3$?
What Makes Good In-Context Examples for GPT-333?
Jiachang Liu
Dinghan Shen
Yizhe Zhang
Bill Dolan
Lawrence Carin
Weizhu Chen
AAMLRALM
390
1,389
0
17 Jan 2021
What Matters In On-Policy Reinforcement Learning? A Large-Scale
  Empirical Study
What Matters In On-Policy Reinforcement Learning? A Large-Scale Empirical Study
Marcin Andrychowicz
Anton Raichuk
Piotr Stańczyk
Manu Orsini
Sertan Girgin
...
Matthieu Geist
Olivier Pietquin
Marcin Michalski
Sylvain Gelly
Olivier Bachem
OffRL
70
224
0
10 Jun 2020
Fine-Tuning Language Models from Human Preferences
Fine-Tuning Language Models from Human Preferences
Daniel M. Ziegler
Nisan Stiennon
Jeff Wu
Tom B. Brown
Alec Radford
Dario Amodei
Paul Christiano
G. Irving
ALM
474
1,766
0
18 Sep 2019
Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Nils Reimers
Iryna Gurevych
1.3K
12,301
0
27 Aug 2019
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
535
19,265
0
20 Jul 2017
Billion-scale similarity search with GPUs
Billion-scale similarity search with GPUs
Jeff Johnson
Matthijs Douze
Hervé Jégou
257
3,737
0
28 Feb 2017
High-Dimensional Continuous Control Using Generalized Advantage
  Estimation
High-Dimensional Continuous Control Using Generalized Advantage Estimation
John Schulman
Philipp Moritz
Sergey Levine
Michael I. Jordan
Pieter Abbeel
OffRL
129
3,438
0
08 Jun 2015
Exact solutions to the nonlinear dynamics of learning in deep linear
  neural networks
Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
Andrew M. Saxe
James L. McClelland
Surya Ganguli
ODL
185
1,852
0
20 Dec 2013
1