ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.11512
  4. Cited By
Enriching Disentanglement: From Logical Definitions to Quantitative
  Metrics

Enriching Disentanglement: From Logical Definitions to Quantitative Metrics

19 May 2023
Yivan Zhang
Masashi Sugiyama
ArXivPDFHTML

Papers citing "Enriching Disentanglement: From Logical Definitions to Quantitative Metrics"

30 / 30 papers shown
Title
Geometric Algebra Transformer
Geometric Algebra Transformer
Johann Brehmer
P. D. Haan
S. Behrends
Taco S. Cohen
61
30
0
28 May 2023
A Category-theoretical Meta-analysis of Definitions of Disentanglement
A Category-theoretical Meta-analysis of Definitions of Disentanglement
Yivan Zhang
Masashi Sugiyama
90
3
0
11 May 2023
Disentanglement of Correlated Factors via Hausdorff Factorized Support
Disentanglement of Correlated Factors via Hausdorff Factorized Support
Karsten Roth
Mark Ibrahim
Zeynep Akata
Pascal Vincent
Diane Bouchacourt
CML
OOD
CoGe
48
33
0
13 Oct 2022
Homomorphism Autoencoder -- Learning Group Structured Representations
  from Observed Transitions
Homomorphism Autoencoder -- Learning Group Structured Representations from Observed Transitions
Hamza Keurti
Hsiao-Ru Pan
M. Besserve
Benjamin Grewe
Bernhard Schölkopf
AI4CE
36
15
0
25 Jul 2022
From Statistical to Causal Learning
From Statistical to Causal Learning
Bernhard Schölkopf
Julius von Kügelgen
CML
53
45
0
01 Apr 2022
Weakly supervised causal representation learning
Weakly supervised causal representation learning
Johann Brehmer
P. D. Haan
Phillip Lippe
Taco S. Cohen
OOD
CML
57
129
0
30 Mar 2022
Graph Neural Networks are Dynamic Programmers
Graph Neural Networks are Dynamic Programmers
Andrew Dudzik
Petar Velickovic
73
64
0
29 Mar 2022
Multi-Agent MDP Homomorphic Networks
Multi-Agent MDP Homomorphic Networks
Elise van der Pol
H. V. Hoof
F. Oliehoek
Max Welling
AI4CE
64
30
0
09 Oct 2021
Measuring Disentanglement: A Review of Metrics
Measuring Disentanglement: A Review of Metrics
M. Carbonneau
Julian Zaïdi
Jonathan Boilard
G. Gagnon
CoGe
DRL
49
84
0
16 Dec 2020
A Survey on Contrastive Self-supervised Learning
A Survey on Contrastive Self-supervised Learning
Ashish Jaiswal
Ashwin Ramesh Babu
Mohammad Zaki Zadeh
Debapriya Banerjee
F. Makedon
SSL
112
1,385
0
31 Oct 2020
On the Transfer of Disentangled Representations in Realistic Settings
On the Transfer of Disentangled Representations in Realistic Settings
Andrea Dittadi
Frederik Trauble
Francesco Locatello
M. Wuthrich
Vaibhav Agrawal
Ole Winther
Stefan Bauer
Bernhard Schölkopf
OOD
91
82
0
27 Oct 2020
Linear Disentangled Representations and Unsupervised Action Estimation
Linear Disentangled Representations and Unsupervised Action Estimation
Matthew Painter
Jonathon S. Hare
Adam Prugel-Bennett
CoGe
DRL
64
20
0
18 Aug 2020
Natural Graph Networks
Natural Graph Networks
P. D. Haan
Taco S. Cohen
Max Welling
GNN
52
44
0
16 Jul 2020
Array Programming with NumPy
Array Programming with NumPy
Charles R. Harris
K. Millman
S. Walt
R. Gommers
Pauli Virtanen
...
Tyler Reddy
Warren Weckesser
Hameer Abbasi
C. Gohlke
T. Oliphant
127
14,883
0
18 Jun 2020
Evaluating the Disentanglement of Deep Generative Models through
  Manifold Topology
Evaluating the Disentanglement of Deep Generative Models through Manifold Topology
Sharon Zhou
E. Zelikman
F. Lu
A. Ng
Gunnar Carlsson
Stefano Ermon
DRL
42
27
0
05 Jun 2020
Calibrated Surrogate Losses for Adversarially Robust Classification
Calibrated Surrogate Losses for Adversarially Robust Classification
Han Bao
Clayton Scott
Masashi Sugiyama
63
46
0
28 May 2020
A Metric Learning Reality Check
A Metric Learning Reality Check
Kevin Musgrave
Serge J. Belongie
Ser-Nam Lim
132
476
0
18 Mar 2020
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
220
316
0
07 Feb 2020
Robust Aggregation for Federated Learning
Robust Aggregation for Federated Learning
Krishna Pillutla
Sham Kakade
Zaïd Harchaoui
FedML
95
651
0
31 Dec 2019
Weakly Supervised Disentanglement with Guarantees
Weakly Supervised Disentanglement with Guarantees
Rui Shu
Yining Chen
Abhishek Kumar
Stefano Ermon
Ben Poole
CoGe
DRL
106
137
0
22 Oct 2019
A synthetic approach to Markov kernels, conditional independence and
  theorems on sufficient statistics
A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics
Tobias Fritz
43
183
0
19 Aug 2019
On the Transfer of Inductive Bias from Simulation to the Real World: a
  New Disentanglement Dataset
On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset
Muhammad Waleed Gondal
Manuel Wüthrich
Ðorðe Miladinovic
Francesco Locatello
M. Breidt
V. Volchkov
J. Akpo
Olivier Bachem
Bernhard Schölkopf
Stefan Bauer
OOD
DRL
79
138
0
07 Jun 2019
Symmetry-Based Disentangled Representation Learning requires Interaction
  with Environments
Symmetry-Based Disentangled Representation Learning requires Interaction with Environments
Hugo Caselles-Dupré
Michael Garcia Ortiz
David Filliat
DRL
51
66
0
30 Mar 2019
Towards a Definition of Disentangled Representations
Towards a Definition of Disentangled Representations
I. Higgins
David Amos
David Pfau
S. Racanière
Loic Matthey
Danilo Jimenez Rezende
Alexander Lerchner
OCL
DRL
92
480
0
05 Dec 2018
Robustly Disentangled Causal Mechanisms: Validating Deep Representations
  for Interventional Robustness
Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness
Raphael Suter
Ðorðe Miladinovic
Bernhard Schölkopf
Stefan Bauer
CML
OOD
DRL
105
162
0
31 Oct 2018
Disentangling by Factorising
Disentangling by Factorising
Hyunjik Kim
A. Mnih
CoGe
OOD
62
1,346
0
16 Feb 2018
Learning Deep Disentangled Embeddings with the F-Statistic Loss
Learning Deep Disentangled Embeddings with the F-Statistic Loss
Karl Ridgeway
Michael C. Mozer
FedML
DRL
CoGe
54
218
0
14 Feb 2018
Input Convex Neural Networks
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
269
619
0
22 Sep 2016
Transformation Properties of Learned Visual Representations
Transformation Properties of Learned Visual Representations
Taco S. Cohen
Max Welling
47
106
0
24 Dec 2014
Representation Learning: A Review and New Perspectives
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OOD
SSL
220
12,422
0
24 Jun 2012
1