ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.07892
  4. Cited By
DAC-MR: Data Augmentation Consistency Based Meta-Regularization for
  Meta-Learning

DAC-MR: Data Augmentation Consistency Based Meta-Regularization for Meta-Learning

13 May 2023
Jun Shu
Xiang Yuan
Deyu Meng
Zongben Xu
ArXivPDFHTML

Papers citing "DAC-MR: Data Augmentation Consistency Based Meta-Regularization for Meta-Learning"

50 / 140 papers shown
Title
Improve Noise Tolerance of Robust Loss via Noise-Awareness
Improve Noise Tolerance of Robust Loss via Noise-Awareness
Kehui Ding
Jun Shu
Deyu Meng
Zongben Xu
NoLa
55
5
0
18 Jan 2023
Physics-Informed Machine Learning: A Survey on Problems, Methods and
  Applications
Physics-Informed Machine Learning: A Survey on Problems, Methods and Applications
Zhongkai Hao
Songming Liu
Yichi Zhang
Chengyang Ying
Yao Feng
Hang Su
Jun Zhu
PINN
AI4CE
81
94
0
15 Nov 2022
Sample Efficiency of Data Augmentation Consistency Regularization
Sample Efficiency of Data Augmentation Consistency Regularization
Shuo Yang
Yijun Dong
Rachel A. Ward
Inderjit S. Dhillon
Sujay Sanghavi
Qi Lei
AAML
36
17
0
24 Feb 2022
CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
  Learning
CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep Learning
Jun Shu
Xiang Yuan
Deyu Meng
Zongben Xu
NoLa
44
33
0
11 Feb 2022
Towards Sample-efficient Overparameterized Meta-learning
Towards Sample-efficient Overparameterized Meta-learning
Yue Sun
Adhyyan Narang
Halil Ibrahim Gulluk
Samet Oymak
Maryam Fazel
BDL
39
25
0
16 Jan 2022
Transferability in Deep Learning: A Survey
Transferability in Deep Learning: A Survey
Junguang Jiang
Yang Shu
Jianmin Wang
Mingsheng Long
OOD
63
102
0
15 Jan 2022
Self-Promoted Prototype Refinement for Few-Shot Class-Incremental
  Learning
Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning
Kai Zhu
Yang Cao
Wei Zhai
Jie Cheng
Zhengjun Zha
CLL
84
145
0
19 Jul 2021
Cross-domain Few-shot Learning with Task-specific Adapters
Cross-domain Few-shot Learning with Task-specific Adapters
Weihong Li
Xialei Liu
Hakan Bilen
OOD
69
113
0
01 Jul 2021
AdaMatch: A Unified Approach to Semi-Supervised Learning and Domain
  Adaptation
AdaMatch: A Unified Approach to Semi-Supervised Learning and Domain Adaptation
David Berthelot
Rebecca Roelofs
Kihyuk Sohn
Nicholas Carlini
Alexey Kurakin
33
137
0
08 Jun 2021
Meta-Learning Reliable Priors in the Function Space
Meta-Learning Reliable Priors in the Function Space
Jonas Rothfuss
Dominique Heyn
Jinfan Chen
Andreas Krause
60
27
0
06 Jun 2021
Representation Learning Beyond Linear Prediction Functions
Representation Learning Beyond Linear Prediction Functions
Ziping Xu
Ambuj Tewari
13
21
0
31 May 2021
Consistency Regularization for Variational Auto-Encoders
Consistency Regularization for Variational Auto-Encoders
Samarth Sinha
Adji Bousso Dieng
CML
52
68
0
31 May 2021
Learning a Universal Template for Few-shot Dataset Generalization
Learning a Universal Template for Few-shot Dataset Generalization
Eleni Triantafillou
Hugo Larochelle
R. Zemel
Vincent Dumoulin
51
93
0
14 May 2021
Few-Shot Incremental Learning with Continually Evolved Classifiers
Few-Shot Incremental Learning with Continually Evolved Classifiers
Chi Zhang
Nan Song
Guosheng Lin
Yun Zheng
Pan Pan
Yinghui Xu
CLL
56
292
0
07 Apr 2021
Universal Representation Learning from Multiple Domains for Few-shot
  Classification
Universal Representation Learning from Multiple Domains for Few-shot Classification
Weihong Li
Xialei Liu
Hakan Bilen
SSL
OOD
VLM
58
85
0
25 Mar 2021
Contrast to Divide: Self-Supervised Pre-Training for Learning with Noisy
  Labels
Contrast to Divide: Self-Supervised Pre-Training for Learning with Noisy Labels
Evgenii Zheltonozhskii
Chaim Baskin
A. Mendelson
A. Bronstein
Or Litany
SSL
35
92
0
25 Mar 2021
Cycle Self-Training for Domain Adaptation
Cycle Self-Training for Domain Adaptation
Hong Liu
Jianmin Wang
Mingsheng Long
78
175
0
05 Mar 2021
Adaptive Consistency Regularization for Semi-Supervised Transfer
  Learning
Adaptive Consistency Regularization for Semi-Supervised Transfer Learning
Abulikemu Abuduweili
Xingjian Li
Humphrey Shi
Chengzhong Xu
Dejing Dou
66
77
0
03 Mar 2021
Augmentation Strategies for Learning with Noisy Labels
Augmentation Strategies for Learning with Noisy Labels
Kento Nishi
Yi Ding
Alex Rich
Tobias Höllerer
NoLa
29
117
0
03 Mar 2021
Searching for Robustness: Loss Learning for Noisy Classification Tasks
Searching for Robustness: Loss Learning for Noisy Classification Tasks
Boyan Gao
Henry Gouk
Timothy M. Hospedales
OOD
NoLa
40
18
0
27 Feb 2021
A Theory of Label Propagation for Subpopulation Shift
A Theory of Label Propagation for Subpopulation Shift
Tianle Cai
Ruiqi Gao
Jason D. Lee
Qi Lei
45
49
0
22 Feb 2021
Provably End-to-end Label-Noise Learning without Anchor Points
Provably End-to-end Label-Noise Learning without Anchor Points
Xuefeng Li
Tongliang Liu
Bo Han
Gang Niu
Masashi Sugiyama
NoLa
141
123
0
04 Feb 2021
SENTRY: Selective Entropy Optimization via Committee Consistency for
  Unsupervised Domain Adaptation
SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation
Viraj Prabhu
Shivam Khare
Deeksha Kartik
Judy Hoffman
56
135
0
21 Dec 2020
Iterative label cleaning for transductive and semi-supervised few-shot
  learning
Iterative label cleaning for transductive and semi-supervised few-shot learning
Michalis Lazarou
Tania Stathaki
Yannis Avrithis
91
61
0
14 Dec 2020
WILDS: A Benchmark of in-the-Wild Distribution Shifts
WILDS: A Benchmark of in-the-Wild Distribution Shifts
Pang Wei Koh
Shiori Sagawa
Henrik Marklund
Sang Michael Xie
Marvin Zhang
...
A. Kundaje
Emma Pierson
Sergey Levine
Chelsea Finn
Percy Liang
OOD
139
1,406
0
14 Dec 2020
A Nested Bi-level Optimization Framework for Robust Few Shot Learning
A Nested Bi-level Optimization Framework for Robust Few Shot Learning
Krishnateja Killamsetty
Changbin Li
Chengli Zhao
Rishabh K. Iyer
Feng Chen
36
10
0
13 Nov 2020
AutoML to Date and Beyond: Challenges and Opportunities
AutoML to Date and Beyond: Challenges and Opportunities
Shubhra (Santu) Karmaker
Md. Mahadi Hassan
Micah J. Smith
Lei Xu
Chengxiang Zhai
K. Veeramachaneni
85
227
0
21 Oct 2020
Data Augmentation for Meta-Learning
Data Augmentation for Meta-Learning
Renkun Ni
Micah Goldblum
Amr Sharaf
Kezhi Kong
Tom Goldstein
44
75
0
14 Oct 2020
Theoretical Analysis of Self-Training with Deep Networks on Unlabeled
  Data
Theoretical Analysis of Self-Training with Deep Networks on Unlabeled Data
Colin Wei
Kendrick Shen
Yining Chen
Tengyu Ma
SSL
50
227
0
07 Oct 2020
Sharpness-Aware Minimization for Efficiently Improving Generalization
Sharpness-Aware Minimization for Efficiently Improving Generalization
Pierre Foret
Ariel Kleiner
H. Mobahi
Behnam Neyshabur
AAML
151
1,314
0
03 Oct 2020
The Advantage of Conditional Meta-Learning for Biased Regularization and
  Fine-Tuning
The Advantage of Conditional Meta-Learning for Biased Regularization and Fine-Tuning
Giulia Denevi
Massimiliano Pontil
C. Ciliberto
71
40
0
25 Aug 2020
Learning to Purify Noisy Labels via Meta Soft Label Corrector
Learning to Purify Noisy Labels via Meta Soft Label Corrector
Yichen Wu
Jun Shu
Qi Xie
Qian Zhao
Deyu Meng
22
65
0
03 Aug 2020
MLR-SNet: Transferable LR Schedules for Heterogeneous Tasks
MLR-SNet: Transferable LR Schedules for Heterogeneous Tasks
Jun Shu
Yanwen Zhu
Qian Zhao
Zongben Xu
Deyu Meng
30
7
0
29 Jul 2020
La-MAML: Look-ahead Meta Learning for Continual Learning
La-MAML: Look-ahead Meta Learning for Continual Learning
Gunshi Gupta
Karmesh Yadav
Liam Paull
CLL
VLM
55
68
0
27 Jul 2020
Meta-Learning Requires Meta-Augmentation
Meta-Learning Requires Meta-Augmentation
Janarthanan Rajendran
A. Irpan
Eric Jang
46
95
0
10 Jul 2020
Loss Function Search for Face Recognition
Loss Function Search for Face Recognition
Xiaobo Wang
Shuo Wang
Cheng Chi
Shifeng Zhang
Tao Mei
CVBM
49
48
0
10 Jul 2020
Adaptive Risk Minimization: Learning to Adapt to Domain Shift
Adaptive Risk Minimization: Learning to Adapt to Domain Shift
Marvin Zhang
Henrik Marklund
Nikita Dhawan
Abhishek Gupta
Sergey Levine
Chelsea Finn
OOD
31
201
0
06 Jul 2020
Early-Learning Regularization Prevents Memorization of Noisy Labels
Early-Learning Regularization Prevents Memorization of Noisy Labels
Sheng Liu
Jonathan Niles-Weed
N. Razavian
C. Fernandez‐Granda
NoLa
58
561
0
30 Jun 2020
Improving robustness against common corruptions by covariate shift
  adaptation
Improving robustness against common corruptions by covariate shift adaptation
Steffen Schneider
E. Rusak
L. Eck
Oliver Bringmann
Wieland Brendel
Matthias Bethge
VLM
56
474
0
30 Jun 2020
Laplacian Regularized Few-Shot Learning
Laplacian Regularized Few-Shot Learning
Imtiaz Masud Ziko
Jose Dolz
Eric Granger
Ismail Ben Ayed
25
176
0
28 Jun 2020
A Universal Representation Transformer Layer for Few-Shot Image
  Classification
A Universal Representation Transformer Layer for Few-Shot Image Classification
Lu Liu
William L. Hamilton
Guodong Long
Jing Jiang
Hugo Larochelle
ViT
68
125
0
21 Jun 2020
On the Theory of Transfer Learning: The Importance of Task Diversity
On the Theory of Transfer Learning: The Importance of Task Diversity
Nilesh Tripuraneni
Michael I. Jordan
Chi Jin
86
217
0
20 Jun 2020
Bootstrap your own latent: A new approach to self-supervised Learning
Bootstrap your own latent: A new approach to self-supervised Learning
Jean-Bastien Grill
Florian Strub
Florent Altché
Corentin Tallec
Pierre Harvey Richemond
...
M. G. Azar
Bilal Piot
Koray Kavukcuoglu
Rémi Munos
Michal Valko
SSL
249
6,718
0
13 Jun 2020
Meta Transition Adaptation for Robust Deep Learning with Noisy Labels
Meta Transition Adaptation for Robust Deep Learning with Noisy Labels
Jun Shu
Qian Zhao
Zengben Xu
Deyu Meng
NoLa
52
30
0
10 Jun 2020
Leveraging the Feature Distribution in Transfer-based Few-Shot Learning
Leveraging the Feature Distribution in Transfer-based Few-Shot Learning
Yuqing Hu
Vincent Gripon
S. Pateux
34
167
0
06 Jun 2020
Empirical Bayes Transductive Meta-Learning with Synthetic Gradients
Empirical Bayes Transductive Meta-Learning with Synthetic Gradients
S. Hu
Pablo G. Moreno
Yanghua Xiao
Xin Shen
G. Obozinski
Neil D. Lawrence
Andreas C. Damianou
BDL
80
125
0
27 Apr 2020
Few-Shot Class-Incremental Learning
Few-Shot Class-Incremental Learning
Xiaoyu Tao
Xiaopeng Hong
Xinyuan Chang
Songlin Dong
Xing Wei
Yihong Gong
CLL
61
408
0
23 Apr 2020
Meta-Learning in Neural Networks: A Survey
Meta-Learning in Neural Networks: A Survey
Timothy M. Hospedales
Antreas Antoniou
P. Micaelli
Amos Storkey
OOD
279
1,950
0
11 Apr 2020
Instance Credibility Inference for Few-Shot Learning
Instance Credibility Inference for Few-Shot Learning
Yikai Wang
C. Xu
Chen Liu
Li Zhang
Yanwei Fu
53
162
0
26 Mar 2020
Meta Pseudo Labels
Meta Pseudo Labels
Hieu H. Pham
Zihang Dai
Qizhe Xie
Minh-Thang Luong
Quoc V. Le
VLM
326
662
0
23 Mar 2020
123
Next