35
10

A Nested Bi-level Optimization Framework for Robust Few Shot Learning

Abstract

Model-Agnostic Meta-Learning (MAML), a popular gradient-based meta-learning framework, assumes that the contribution of each task or instance to the meta-learner is equal. Hence, it fails to address the domain shift between base and novel classes in few-shot learning. In this work, we propose a novel robust meta-learning algorithm, NestedMAML, which learns to assign weights to training tasks or instances. We consider weights as hyper-parameters and iteratively optimize them using a small set of validation tasks set in a nested bi-level optimization approach (in contrast to the standard bi-level optimization in MAML). We then apply NestedMAML in the meta-training stage, which involves (1) several tasks sampled from a distribution different from the meta-test task distribution, or (2) some data samples with noisy labels. Extensive experiments on synthetic and real-world datasets demonstrate that NestedMAML efficiently mitigates the effects of "unwanted" tasks or instances, leading to significant improvement over the state-of-the-art robust meta-learning methods.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.