Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.03263
Cited By
Bayesian Reinforcement Learning with Limited Cognitive Load
5 May 2023
Dilip Arumugam
Mark K. Ho
Noah D. Goodman
Benjamin Van Roy
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Bayesian Reinforcement Learning with Limited Cognitive Load"
25 / 25 papers shown
Title
Reinforcement learning
Florentin Wörgötter
82
2,544
0
16 May 2024
The Statistical Complexity of Interactive Decision Making
Dylan J. Foster
Sham Kakade
Jian Qian
Alexander Rakhlin
305
178
0
27 Dec 2021
Generalized Kernel Thinning
Raaz Dwivedi
Lester W. Mackey
74
30
0
04 Oct 2021
People construct simplified mental representations to plan
Mark K. Ho
David Abel
Carlos G. Correa
Michael L. Littman
Jonathan Cohen
Thomas Griffiths
43
90
0
14 May 2021
Reinforcement Learning, Bit by Bit
Xiuyuan Lu
Benjamin Van Roy
Vikranth Dwaracherla
M. Ibrahimi
Ian Osband
Zheng Wen
44
70
0
06 Mar 2021
Simple Agent, Complex Environment: Efficient Reinforcement Learning with Agent States
Shi Dong
Benjamin Van Roy
Zhengyuan Zhou
49
29
0
10 Feb 2021
Deciding What to Learn: A Rate-Distortion Approach
Dilip Arumugam
Benjamin Van Roy
37
24
0
15 Jan 2021
The Value Equivalence Principle for Model-Based Reinforcement Learning
Christopher Grimm
André Barreto
Satinder Singh
David Silver
OffRL
40
85
0
06 Nov 2020
Mirror Descent and the Information Ratio
Tor Lattimore
András Gyorgy
38
42
0
25 Sep 2020
Goal-Aware Prediction: Learning to Model What Matters
Suraj Nair
Silvio Savarese
Chelsea Finn
60
65
0
14 Jul 2020
Model-Based Reinforcement Learning with Value-Targeted Regression
Alex Ayoub
Zeyu Jia
Csaba Szepesvári
Mengdi Wang
Lin F. Yang
OffRL
83
303
0
01 Jun 2020
The Variational Bandwidth Bottleneck: Stochastic Evaluation on an Information Budget
Anirudh Goyal
Yoshua Bengio
M. Botvinick
Sergey Levine
54
24
0
24 Apr 2020
Towards a Quantum-Like Cognitive Architecture for Decision-Making
Falk Lieder
Lauren Fell
Shahram Dehdashti
Thomas Griffiths
Andreas Wichert
AI4CE
41
267
0
11 May 2019
Exploiting Hierarchy for Learning and Transfer in KL-regularized RL
Dhruva Tirumala
Hyeonwoo Noh
Alexandre Galashov
Leonard Hasenclever
Arun Ahuja
Greg Wayne
Razvan Pascanu
Yee Whye Teh
N. Heess
OffRL
46
45
0
18 Mar 2019
An Information-Theoretic Approach to Minimax Regret in Partial Monitoring
Tor Lattimore
Csaba Szepesvári
35
70
0
01 Feb 2019
Tighter Problem-Dependent Regret Bounds in Reinforcement Learning without Domain Knowledge using Value Function Bounds
Andrea Zanette
Emma Brunskill
OffRL
95
276
0
01 Jan 2019
Reinforcement Learning and Control as Probabilistic Inference: Tutorial and Review
Sergey Levine
AI4CE
BDL
73
671
0
02 May 2018
Unifying PAC and Regret: Uniform PAC Bounds for Episodic Reinforcement Learning
Christoph Dann
Tor Lattimore
Emma Brunskill
72
308
0
22 Mar 2017
Deep Exploration via Randomized Value Functions
Ian Osband
Benjamin Van Roy
Daniel Russo
Zheng Wen
89
304
0
22 Mar 2017
Reinforcement Learning with Deep Energy-Based Policies
Tuomas Haarnoja
Haoran Tang
Pieter Abbeel
Sergey Levine
92
1,339
0
27 Feb 2017
The Predictron: End-To-End Learning and Planning
David Silver
H. V. Hasselt
Matteo Hessel
Tom Schaul
A. Guez
...
Gabriel Dulac-Arnold
David P. Reichert
Neil C. Rabinowitz
André Barreto
T. Degris
62
291
0
28 Dec 2016
Why is Posterior Sampling Better than Optimism for Reinforcement Learning?
Ian Osband
Benjamin Van Roy
BDL
76
259
0
01 Jul 2016
Algorithms for multi-armed bandit problems
Volodymyr Kuleshov
Doina Precup
108
349
0
25 Feb 2014
Thompson Sampling for Complex Bandit Problems
Aditya Gopalan
Shie Mannor
Yishay Mansour
130
202
0
03 Nov 2013
Sample Complexity of Multi-task Reinforcement Learning
Emma Brunskill
Lihong Li
73
138
0
26 Sep 2013
1