ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.01754
  4. Cited By
Single-model uncertainty quantification in neural network potentials
  does not consistently outperform model ensembles

Single-model uncertainty quantification in neural network potentials does not consistently outperform model ensembles

2 May 2023
Aik Rui Tan
S. Urata
Samuel Goldman
Johannes C. B. Dietschreit
Rafael Gómez-Bombarelli
    BDL
ArXiv (abs)PDFHTML

Papers citing "Single-model uncertainty quantification in neural network potentials does not consistently outperform model ensembles"

13 / 13 papers shown
Title
Fast Uncertainty Estimates in Deep Learning Interatomic Potentials
Fast Uncertainty Estimates in Deep Learning Interatomic Potentials
Albert J. W. Zhu
Simon L. Batzner
Albert Musaelian
Boris Kozinsky
49
48
0
17 Nov 2022
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDLUQCVOOD
235
1,164
0
07 Jul 2021
Equivariant message passing for the prediction of tensorial properties
  and molecular spectra
Equivariant message passing for the prediction of tensorial properties and molecular spectra
Kristof T. Schütt
Oliver T. Unke
M. Gastegger
110
544
0
05 Feb 2021
Differentiable sampling of molecular geometries with uncertainty-based
  adversarial attacks
Differentiable sampling of molecular geometries with uncertainty-based adversarial attacks
Daniel Schwalbe-Koda
Aik Rui Tan
Rafael Gómez-Bombarelli
AAML
85
61
0
27 Jan 2021
Gradients as a Measure of Uncertainty in Neural Networks
Gradients as a Measure of Uncertainty in Neural Networks
Jinsol Lee
Ghassan AlRegib
UQCV
73
63
0
18 Aug 2020
Uncertainty Quantification Using Neural Networks for Molecular Property
  Prediction
Uncertainty Quantification Using Neural Networks for Molecular Property Prediction
Lior Hirschfeld
Kyle Swanson
Kevin Kaichuang Yang
Regina Barzilay
Connor W. Coley
93
191
0
20 May 2020
Directional Message Passing for Molecular Graphs
Directional Message Passing for Molecular Graphs
Johannes Klicpera
Janek Groß
Stephan Günnemann
140
881
0
06 Mar 2020
Deep Evidential Regression
Deep Evidential Regression
Alexander Amini
Wilko Schwarting
A. Soleimany
Daniela Rus
EDLPERBDLUDUQCV
100
442
0
07 Oct 2019
Generative Models for Automatic Chemical Design
Generative Models for Automatic Chemical Design
Daniel Schwalbe-Koda
Rafael Gómez-Bombarelli
MedImAI4CE
84
81
0
02 Jul 2019
Analyzing Learned Molecular Representations for Property Prediction
Analyzing Learned Molecular Representations for Property Prediction
Kevin Kaichuang Yang
Kyle Swanson
Wengong Jin
Connor W. Coley
Philipp Eiden
...
Andrew Palmer
Volker Settels
Tommi Jaakkola
K. Jensen
Regina Barzilay
120
1,327
0
02 Apr 2019
Classification Uncertainty of Deep Neural Networks Based on Gradient
  Information
Classification Uncertainty of Deep Neural Networks Based on Gradient Information
Philipp Oberdiek
Matthias Rottmann
Hanno Gottschalk
UQCV
64
64
0
22 May 2018
Understanding Black-box Predictions via Influence Functions
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
219
2,910
0
14 Mar 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCVBDL
847
5,847
0
05 Dec 2016
1