ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.14329
  4. Cited By
Learning to Extrapolate: A Transductive Approach

Learning to Extrapolate: A Transductive Approach

27 April 2023
Aviv Netanyahu
Abhishek Gupta
Max Simchowitz
K. Zhang
Pulkit Agrawal
ArXivPDFHTML

Papers citing "Learning to Extrapolate: A Transductive Approach"

18 / 18 papers shown
Title
Known Unknowns: Out-of-Distribution Property Prediction in Materials and Molecules
Nofit Segal
Aviv Netanyahu
Kevin P. Greenman
Pulkit Agrawal
Rafael Gómez-Bombarelli
OODD
48
1
0
09 Feb 2025
Towards Understanding Extrapolation: a Causal Lens
Towards Understanding Extrapolation: a Causal Lens
Lingjing Kong
Guangyi Chen
P. Stojanov
H. Li
Eric P. Xing
Kun Zhang
140
2
0
17 Jan 2025
On the Use of Anchoring for Training Vision Models
On the Use of Anchoring for Training Vision Models
V. Narayanaswamy
Kowshik Thopalli
Rushil Anirudh
Yamen Mubarka
W. Sakla
Jayaraman J. Thiagarajan
35
0
0
01 Jun 2024
A General Theory for Compositional Generalization
A General Theory for Compositional Generalization
Jingwen Fu
Zhizheng Zhang
Yan Lu
Nanning Zheng
AI4CE
CoGe
24
2
0
20 May 2024
Compositional Conservatism: A Transductive Approach in Offline
  Reinforcement Learning
Compositional Conservatism: A Transductive Approach in Offline Reinforcement Learning
Yeda Song
Dongwook Lee
Gunhee Kim
OffRL
25
1
0
06 Apr 2024
On Provable Length and Compositional Generalization
On Provable Length and Compositional Generalization
Kartik Ahuja
Amin Mansouri
OODD
33
7
0
07 Feb 2024
Accurate and Scalable Estimation of Epistemic Uncertainty for Graph
  Neural Networks
Accurate and Scalable Estimation of Epistemic Uncertainty for Graph Neural Networks
Puja Trivedi
Mark Heimann
Rushil Anirudh
Danai Koutra
Jayaraman J. Thiagarajan
UQCV
24
4
0
07 Jan 2024
Provable Compositional Generalization for Object-Centric Learning
Provable Compositional Generalization for Object-Centric Learning
Thaddäus Wiedemer
Jack Brady
Alexander Panfilov
Attila Juhos
Matthias Bethge
Wieland Brendel
OCL
27
17
0
09 Oct 2023
PAGER: A Framework for Failure Analysis of Deep Regression Models
PAGER: A Framework for Failure Analysis of Deep Regression Models
Jayaraman J. Thiagarajan
V. Narayanaswamy
Puja Trivedi
Rushil Anirudh
28
0
0
20 Sep 2023
Compositional Generalization from First Principles
Compositional Generalization from First Principles
Thaddäus Wiedemer
Prasanna Mayilvahanan
Matthias Bethge
Wieland Brendel
OCL
25
37
0
10 Jul 2023
Causal Matrix Completion
Causal Matrix Completion
Anish Agarwal
M. Dahleh
Devavrat Shah
Dennis Shen
CML
43
51
0
30 Sep 2021
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System
Yixuan Su
Lei Shu
Elman Mansimov
Arshit Gupta
Deng Cai
Yi-An Lai
Yi Zhang
150
192
0
29 Sep 2021
Automatic Symmetry Discovery with Lie Algebra Convolutional Network
Automatic Symmetry Discovery with Lie Algebra Convolutional Network
Nima Dehmamy
Robin G. Walters
Yanchen Liu
Dashun Wang
Rose Yu
AI4CE
78
81
0
15 Sep 2021
Why Generalization in RL is Difficult: Epistemic POMDPs and Implicit
  Partial Observability
Why Generalization in RL is Difficult: Epistemic POMDPs and Implicit Partial Observability
Dibya Ghosh
Jad Rahme
Aviral Kumar
Amy Zhang
Ryan P. Adams
Sergey Levine
OffRL
270
108
0
13 Jul 2021
Vector Neurons: A General Framework for SO(3)-Equivariant Networks
Vector Neurons: A General Framework for SO(3)-Equivariant Networks
Congyue Deng
Or Litany
Yueqi Duan
A. Poulenard
Andrea Tagliasacchi
Leonidas J. Guibas
3DPC
104
315
0
25 Apr 2021
Zero-Shot Text-to-Image Generation
Zero-Shot Text-to-Image Generation
Aditya A. Ramesh
Mikhail Pavlov
Gabriel Goh
Scott Gray
Chelsea Voss
Alec Radford
Mark Chen
Ilya Sutskever
VLM
253
4,774
0
24 Feb 2021
On Translation Invariance in CNNs: Convolutional Layers can Exploit
  Absolute Spatial Location
On Translation Invariance in CNNs: Convolutional Layers can Exploit Absolute Spatial Location
O. Kayhan
J. C. V. Gemert
209
232
0
16 Mar 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
281
11,677
0
09 Mar 2017
1