ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.09961
  4. Cited By
Adaptive Scheduling for Edge-Assisted DNN Serving

Adaptive Scheduling for Edge-Assisted DNN Serving

19 April 2023
Jian He
Chen-Shun Yang
Zhaoyuan He
Ghufran Baig
L. Qiu
ArXivPDFHTML

Papers citing "Adaptive Scheduling for Edge-Assisted DNN Serving"

15 / 15 papers shown
Title
LazyBatching: An SLA-aware Batching System for Cloud Machine Learning
  Inference
LazyBatching: An SLA-aware Batching System for Cloud Machine Learning Inference
Yujeong Choi
Yunseong Kim
Minsoo Rhu
44
66
0
25 Oct 2020
Serving DNNs like Clockwork: Performance Predictability from the Bottom
  Up
Serving DNNs like Clockwork: Performance Predictability from the Bottom Up
A. Gujarati
Reza Karimi
Safya Alzayat
Wei Hao
Antoine Kaufmann
Ymir Vigfusson
Jonathan Mace
82
277
0
03 Jun 2020
Integer Quantization for Deep Learning Inference: Principles and
  Empirical Evaluation
Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation
Hao Wu
Patrick Judd
Xiaojie Zhang
Mikhail Isaev
Paulius Micikevicius
MQ
79
356
0
20 Apr 2020
Towards Real-Time Action Recognition on Mobile Devices Using Deep Models
Towards Real-Time Action Recognition on Mobile Devices Using Deep Models
Chen-Da Liu-Zhang
Xin-Xin Liu
Jianxin Wu
HAI
22
9
0
17 Jun 2019
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture
  Design
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
Ningning Ma
Xiangyu Zhang
Haitao Zheng
Jian Sun
171
4,983
0
30 Jul 2018
Encoder-Decoder with Atrous Separable Convolution for Semantic Image
  Segmentation
Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
Liang-Chieh Chen
Yukun Zhu
George Papandreou
Florian Schroff
Hartwig Adam
SSeg
430
13,121
0
07 Feb 2018
MobileNetV2: Inverted Residuals and Linear Bottlenecks
MobileNetV2: Inverted Residuals and Linear Bottlenecks
Mark Sandler
Andrew G. Howard
Menglong Zhu
A. Zhmoginov
Liang-Chieh Chen
173
19,262
0
13 Jan 2018
ShuffleNet: An Extremely Efficient Convolutional Neural Network for
  Mobile Devices
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
Xiangyu Zhang
Xinyu Zhou
Mengxiao Lin
Jian Sun
AI4TS
134
6,865
0
04 Jul 2017
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
1.1K
20,832
0
17 Apr 2017
Towards Accurate Multi-person Pose Estimation in the Wild
Towards Accurate Multi-person Pose Estimation in the Wild
George Papandreou
Tyler Lixuan Zhu
Nori Kanazawa
Alexander Toshev
Jonathan Tompson
C. Bregler
Kevin Patrick Murphy
3DH
136
806
0
06 Jan 2017
FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks
FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks
Eddy Ilg
N. Mayer
Tonmoy Saikia
Margret Keuper
Alexey Dosovitskiy
Thomas Brox
3DPC
255
3,079
0
06 Dec 2016
TensorFlow: A system for large-scale machine learning
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNN
AI4CE
429
18,346
0
27 May 2016
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB
  model size
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
F. Iandola
Song Han
Matthew W. Moskewicz
Khalid Ashraf
W. Dally
Kurt Keutzer
139
7,477
0
24 Feb 2016
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
  Quantization and Huffman Coding
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
253
8,832
0
01 Oct 2015
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
447
43,635
0
17 Sep 2014
1