ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.09807
  4. Cited By
VMA: Divide-and-Conquer Vectorized Map Annotation System for Large-Scale
  Driving Scene

VMA: Divide-and-Conquer Vectorized Map Annotation System for Large-Scale Driving Scene

19 April 2023
Shaoyu Chen
Yunchi Zhang
Bencheng Liao
Jiafeng Xie
Tianheng Cheng
Wei Sui
Qian Zhang
Chang Huang
Wenyu Liu
Xinggang Wang
ArXivPDFHTML

Papers citing "VMA: Divide-and-Conquer Vectorized Map Annotation System for Large-Scale Driving Scene"

4 / 4 papers shown
Title
A Vision-Centric Approach for Static Map Element Annotation
A Vision-Centric Approach for Static Map Element Annotation
Jiaxin Zhang
Shiyuan Chen
Haoran Yin
Ruohong Mei
Xuan Liu
Cong Yang
Qian Zhang
Wei Sui
3DV
34
3
0
21 Sep 2023
LT-mapper: A Modular Framework for LiDAR-based Lifelong Mapping
LT-mapper: A Modular Framework for LiDAR-based Lifelong Mapping
Giseop Kim
Ayoung Kim
48
35
0
16 Jul 2021
Convolutional Recurrent Network for Road Boundary Extraction
Convolutional Recurrent Network for Road Boundary Extraction
Justin Liang
N. Homayounfar
Wei-Chiu Ma
Shenlong Wang
R. Urtasun
119
73
0
21 Dec 2020
Gen-LaneNet: A Generalized and Scalable Approach for 3D Lane Detection
Gen-LaneNet: A Generalized and Scalable Approach for 3D Lane Detection
Yuliang Guo
Guang Chen
Peitao Zhao
Weide Zhang
Jinghao Miao
Jingao Wang
Tae Eun Choe
3DPC
79
106
0
24 Mar 2020
1