ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.06955
  4. Cited By
Uncertainty-Aware Null Space Networks for Data-Consistent Image
  Reconstruction

Uncertainty-Aware Null Space Networks for Data-Consistent Image Reconstruction

14 April 2023
Christoph Angermann
Simon Göppel
Markus Haltmeier
ArXivPDFHTML

Papers citing "Uncertainty-Aware Null Space Networks for Data-Consistent Image Reconstruction"

17 / 17 papers shown
Title
Unsupervised Joint Image Transfer and Uncertainty Quantification Using
  Patch Invariant Networks
Unsupervised Joint Image Transfer and Uncertainty Quantification Using Patch Invariant Networks
Christoph Angermann
Markus Haltmeier
Ahsan Raza Siyal
59
3
0
09 Jul 2022
Robustness via Uncertainty-aware Cycle Consistency
Robustness via Uncertainty-aware Cycle Consistency
Uddeshya Upadhyay
Yanbei Chen
Zeynep Akata
67
21
0
24 Oct 2021
A Review of Uncertainty Quantification in Deep Learning: Techniques,
  Applications and Challenges
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDL
UQCV
339
1,922
0
12 Nov 2020
Solving Inverse Problems With Deep Neural Networks -- Robustness
  Included?
Solving Inverse Problems With Deep Neural Networks -- Robustness Included?
Martin Genzel
Jan Macdonald
M. März
AAML
OOD
54
105
0
09 Nov 2020
Regularization of Inverse Problems by Neural Networks
Regularization of Inverse Problems by Neural Networks
Markus Haltmeier
Linh V. Nguyen
68
18
0
06 Jun 2020
Deep Learning Techniques for Inverse Problems in Imaging
Deep Learning Techniques for Inverse Problems in Imaging
Greg Ongie
A. Jalal
Christopher A. Metzler
Richard G. Baraniuk
A. Dimakis
Rebecca Willett
81
533
0
12 May 2020
Analysis of Explainers of Black Box Deep Neural Networks for Computer
  Vision: A Survey
Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey
Vanessa Buhrmester
David Münch
Michael Arens
MLAU
FaML
XAI
AAML
96
363
0
27 Nov 2019
The MBPEP: a deep ensemble pruning algorithm providing high quality
  uncertainty prediction
The MBPEP: a deep ensemble pruning algorithm providing high quality uncertainty prediction
Ruihan Hu
Qijun Huang
Sheng Chang
Hao Wang
Jin He
UQCV
41
32
0
25 Feb 2019
fastMRI: An Open Dataset and Benchmarks for Accelerated MRI
fastMRI: An Open Dataset and Benchmarks for Accelerated MRI
Jure Zbontar
Florian Knoll
Anuroop Sriram
Tullie Murrell
Zhengnan Huang
...
Erich Owens
C. L. Zitnick
M. Recht
D. Sodickson
Yvonne W. Lui
OOD
65
845
0
21 Nov 2018
Generative Adversarial Networks: An Overview
Generative Adversarial Networks: An Overview
Antonia Creswell
Tom White
Vincent Dumoulin
Kai Arulkumaran
B. Sengupta
Anil A Bharath
GAN
111
3,051
0
19 Oct 2017
Deep learning for undersampled MRI reconstruction
Deep learning for undersampled MRI reconstruction
Chang Min Hyun
Hwa Pyung Kim
S. Lee
Sungchul Lee
J.K. Seo
53
457
0
08 Sep 2017
Learning a Variational Network for Reconstruction of Accelerated MRI
  Data
Learning a Variational Network for Reconstruction of Accelerated MRI Data
Kerstin Hammernik
Teresa Klatzer
Erich Kobler
M. Recht
D. Sodickson
Thomas Pock
Florian Knoll
70
1,542
0
03 Apr 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer
  Vision?
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDL
OOD
UD
UQCV
PER
354
4,709
0
15 Mar 2017
DR2-Net: Deep Residual Reconstruction Network for Image Compressive
  Sensing
DR2-Net: Deep Residual Reconstruction Network for Image Compressive Sensing
Hantao Yao
Feng Dai
Dongming Zhang
Yike Ma
Shiliang Zhang
Yongdong Zhang
Qi Tian
54
308
0
19 Feb 2017
Deep Convolutional Neural Network for Inverse Problems in Imaging
Deep Convolutional Neural Network for Inverse Problems in Imaging
Kyong Hwan Jin
Michael T. McCann
Emmanuel Froustey
M. Unser
71
2,119
0
11 Nov 2016
Fully Convolutional Networks for Semantic Segmentation
Fully Convolutional Networks for Semantic Segmentation
Evan Shelhamer
Jonathan Long
Trevor Darrell
VOS
SSeg
741
37,862
0
20 May 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
821
9,318
0
06 Jun 2015
1