ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.04824
  4. Cited By
Gradient-based Uncertainty Attribution for Explainable Bayesian Deep
  Learning

Gradient-based Uncertainty Attribution for Explainable Bayesian Deep Learning

10 April 2023
Hanjing Wang
D. Joshi
Shiqiang Wang
Q. Ji
    UQCV
    BDL
ArXivPDFHTML

Papers citing "Gradient-based Uncertainty Attribution for Explainable Bayesian Deep Learning"

15 / 15 papers shown
Title
Identifying Drivers of Predictive Aleatoric Uncertainty
Identifying Drivers of Predictive Aleatoric Uncertainty
Pascal Iversen
Simon Witzke
Katharina Baum
Bernhard Y. Renard
UD
106
2
0
12 Dec 2023
Guided Integrated Gradients: An Adaptive Path Method for Removing Noise
Guided Integrated Gradients: An Adaptive Path Method for Removing Noise
A. Kapishnikov
Subhashini Venugopalan
Besim Avci
Benjamin D. Wedin
Michael Terry
Tolga Bolukbasi
79
93
0
17 Jun 2021
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Javier Antorán
Umang Bhatt
T. Adel
Adrian Weller
José Miguel Hernández-Lobato
UQCV
BDL
71
115
0
11 Jun 2020
BatchEnsemble: An Alternative Approach to Efficient Ensemble and
  Lifelong Learning
BatchEnsemble: An Alternative Approach to Efficient Ensemble and Lifelong Learning
Yeming Wen
Dustin Tran
Jimmy Ba
OOD
FedML
UQCV
129
487
0
17 Feb 2020
A Simple Baseline for Bayesian Uncertainty in Deep Learning
A Simple Baseline for Bayesian Uncertainty in Deep Learning
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
BDL
UQCV
82
804
0
07 Feb 2019
RISE: Randomized Input Sampling for Explanation of Black-box Models
RISE: Randomized Input Sampling for Explanation of Black-box Models
Vitali Petsiuk
Abir Das
Kate Saenko
FAtt
164
1,164
0
19 Jun 2018
Real Time Image Saliency for Black Box Classifiers
Real Time Image Saliency for Black Box Classifiers
P. Dabkowski
Y. Gal
62
586
0
22 May 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
74
1,514
0
11 Apr 2017
Learning Important Features Through Propagating Activation Differences
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
153
3,848
0
10 Apr 2017
Snapshot Ensembles: Train 1, get M for free
Snapshot Ensembles: Train 1, get M for free
Gao Huang
Yixuan Li
Geoff Pleiss
Zhuang Liu
John E. Hopcroft
Kilian Q. Weinberger
OOD
FedML
UQCV
118
942
0
01 Apr 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
151
5,920
0
04 Mar 2017
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
803
16,828
0
16 Feb 2016
Striving for Simplicity: The All Convolutional Net
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
208
4,653
0
21 Dec 2014
Stochastic Gradient Hamiltonian Monte Carlo
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
102
906
0
17 Feb 2014
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
422
15,825
0
12 Nov 2013
1