ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.04539
  4. Cited By
UATTA-EB: Uncertainty-Aware Test-Time Augmented Ensemble of BERTs for
  Classifying Common Mental Illnesses on Social Media Posts

UATTA-EB: Uncertainty-Aware Test-Time Augmented Ensemble of BERTs for Classifying Common Mental Illnesses on Social Media Posts

10 April 2023
Pratinav Seth
Mihir Agarwal
    AI4MH
ArXiv (abs)PDFHTML

Papers citing "UATTA-EB: Uncertainty-Aware Test-Time Augmented Ensemble of BERTs for Classifying Common Mental Illnesses on Social Media Posts"

29 / 29 papers shown
Title
Mental Illness Classification on Social Media Texts using Deep Learning
  and Transfer Learning
Mental Illness Classification on Social Media Texts using Deep Learning and Transfer Learning
Iqra Ameer
M. Arif
Grigori Sidorov
Helena Gómez-Adorno
Alexander Gelbukh
AI4MH
41
23
0
03 Jul 2022
Uncertainty-aware deep learning methods for robust diabetic retinopathy
  classification
Uncertainty-aware deep learning methods for robust diabetic retinopathy classification
J. Jaskari
J. Sahlsten
Theodoros Damoulas
Jeremias Knoblauch
Simo Särkkä
L. Kärkkäinen
K. Hietala
K. Kaski
BDLUQCV
42
28
0
22 Jan 2022
Evaluating Predictive Uncertainty and Robustness to Distributional Shift
  Using Real World Data
Evaluating Predictive Uncertainty and Robustness to Distributional Shift Using Real World Data
Kumud Lakara
Akshat Bhandari
Pratinav Seth
Ujjwal Verma
OOD
55
4
0
08 Nov 2021
Better Aggregation in Test-Time Augmentation
Better Aggregation in Test-Time Augmentation
Divya Shanmugam
Davis W. Blalock
Guha Balakrishnan
John Guttag
ViT
67
148
0
23 Nov 2020
An Analysis of Simple Data Augmentation for Named Entity Recognition
An Analysis of Simple Data Augmentation for Named Entity Recognition
Xiang Dai
Heike Adel
97
198
0
22 Oct 2020
DeBERTa: Decoding-enhanced BERT with Disentangled Attention
DeBERTa: Decoding-enhanced BERT with Disentangled Attention
Pengcheng He
Xiaodong Liu
Jianfeng Gao
Weizhu Chen
AAML
161
2,737
0
05 Jun 2020
Pretrained Transformers Improve Out-of-Distribution Robustness
Pretrained Transformers Improve Out-of-Distribution Robustness
Dan Hendrycks
Xiaoyuan Liu
Eric Wallace
Adam Dziedzic
R. Krishnan
Basel Alomair
OOD
191
434
0
13 Apr 2020
An Exploration of Data Augmentation and Sampling Techniques for
  Domain-Agnostic Question Answering
An Exploration of Data Augmentation and Sampling Techniques for Domain-Agnostic Question Answering
Shayne Longpre
Yi Lu
Zhucheng Tu
Christopher DuBois
61
70
0
04 Dec 2019
Calibration tests in multi-class classification: A unifying framework
Calibration tests in multi-class classification: A unifying framework
David Widmann
Fredrik Lindsten
Dave Zachariah
78
94
0
24 Oct 2019
DistilBERT, a distilled version of BERT: smaller, faster, cheaper and
  lighter
DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter
Victor Sanh
Lysandre Debut
Julien Chaumond
Thomas Wolf
232
7,520
0
02 Oct 2019
Controllable Data Synthesis Method for Grammatical Error Correction
Controllable Data Synthesis Method for Grammatical Error Correction
Liner Yang
Chencheng Wang
Yuxiang Chen
Yongping Du
Erhong Yang
48
17
0
29 Sep 2019
ALBERT: A Lite BERT for Self-supervised Learning of Language
  Representations
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
Zhenzhong Lan
Mingda Chen
Sebastian Goodman
Kevin Gimpel
Piyush Sharma
Radu Soricut
SSLAIMat
368
6,455
0
26 Sep 2019
RoBERTa: A Robustly Optimized BERT Pretraining Approach
RoBERTa: A Robustly Optimized BERT Pretraining Approach
Yinhan Liu
Myle Ott
Naman Goyal
Jingfei Du
Mandar Joshi
Danqi Chen
Omer Levy
M. Lewis
Luke Zettlemoyer
Veselin Stoyanov
AIMat
662
24,464
0
26 Jul 2019
Generalized Data Augmentation for Low-Resource Translation
Generalized Data Augmentation for Low-Resource Translation
Mengzhou Xia
X. Kong
Antonios Anastasopoulos
Graham Neubig
67
121
0
10 Jun 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
170
1,695
0
06 Jun 2019
XLDA: Cross-Lingual Data Augmentation for Natural Language Inference and
  Question Answering
XLDA: Cross-Lingual Data Augmentation for Natural Language Inference and Question Answering
Jasdeep Singh
Bryan McCann
N. Keskar
Caiming Xiong
R. Socher
ELM
48
81
0
27 May 2019
Good-Enough Compositional Data Augmentation
Good-Enough Compositional Data Augmentation
Jacob Andreas
68
234
0
21 Apr 2019
Data Augmentation for BERT Fine-Tuning in Open-Domain Question Answering
Data Augmentation for BERT Fine-Tuning in Open-Domain Question Answering
Wei Yang
Yuqing Xie
Luchen Tan
Kun Xiong
Ming Li
Jimmy J. Lin
RALMOOD
52
64
0
14 Apr 2019
Certified Adversarial Robustness via Randomized Smoothing
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
152
2,044
0
08 Feb 2019
Deflecting Adversarial Attacks with Pixel Deflection
Deflecting Adversarial Attacks with Pixel Deflection
Aaditya (Adi) Prakash
N. Moran
Solomon Garber
Antonella DiLillo
J. Storer
AAML
61
303
0
26 Jan 2018
Deep Neural Networks as Gaussian Processes
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCVBDL
128
1,093
0
01 Nov 2017
Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry
  and Semantics
Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
Alex Kendall
Y. Gal
R. Cipolla
3DH
272
3,123
0
19 May 2017
Active Bias: Training More Accurate Neural Networks by Emphasizing High
  Variance Samples
Active Bias: Training More Accurate Neural Networks by Emphasizing High Variance Samples
Haw-Shiuan Chang
Erik Learned-Miller
Andrew McCallum
75
353
0
24 Apr 2017
Data Recombination for Neural Semantic Parsing
Data Recombination for Neural Semantic Parsing
Robin Jia
Percy Liang
84
466
0
11 Jun 2016
Improving Neural Machine Translation Models with Monolingual Data
Improving Neural Machine Translation Models with Monolingual Data
Rico Sennrich
Barry Haddow
Alexandra Birch
248
2,722
0
20 Nov 2015
Variational Dropout and the Local Reparameterization Trick
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
226
1,514
0
08 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCVBDL
827
9,318
0
06 Jun 2015
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural
  Networks
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCVBDL
130
946
0
18 Feb 2015
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
477
43,658
0
17 Sep 2014
1