ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.02959
  4. Cited By
When approximate design for fast homomorphic computation provides
  differential privacy guarantees

When approximate design for fast homomorphic computation provides differential privacy guarantees

6 April 2023
Arnaud Grivet Sébert
Martin Zuber
Oana Stan
Renaud Sirdey
Cédric Gouy-Pailler
    TPM
ArXivPDFHTML

Papers citing "When approximate design for fast homomorphic computation provides differential privacy guarantees"

2 / 2 papers shown
Title
Amplification by Shuffling: From Local to Central Differential Privacy
  via Anonymity
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
150
422
0
29 Nov 2018
Prochlo: Strong Privacy for Analytics in the Crowd
Prochlo: Strong Privacy for Analytics in the Crowd
Andrea Bittau
Ulfar Erlingsson
Petros Maniatis
Ilya Mironov
A. Raghunathan
David Lie
Mitch Rudominer
Ushasree Kode
J. Tinnés
B. Seefeld
91
279
0
02 Oct 2017
1