Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2304.01219
Cited By
DoE2Vec: Deep-learning Based Features for Exploratory Landscape Analysis
31 March 2023
Bas van Stein
Fu Xing Long
M. Frenzel
Peter Krause
M. Gitterle
T.H.W. Bäck
Re-assign community
ArXiv
PDF
HTML
Papers citing
"DoE2Vec: Deep-learning Based Features for Exploratory Landscape Analysis"
16 / 16 papers shown
Title
A Collection of Deep Learning-based Feature-Free Approaches for Characterizing Single-Objective Continuous Fitness Landscapes
M. Seiler
Raphael Patrick Prager
P. Kerschke
Heike Trautmann
51
20
0
12 Apr 2022
The Impact of Hyper-Parameter Tuning for Landscape-Aware Performance Regression and Algorithm Selection
Anja Jankovic
Gorjan Popovski
T. Eftimov
Carola Doerr
33
23
0
19 Apr 2021
Towards Explainable Exploratory Landscape Analysis: Extreme Feature Selection for Classifying BBOB Functions
Quentin Renau
Johann Dréo
Carola Doerr
Benjamin Doerr
24
33
0
01 Feb 2021
Neural Network Design: Learning from Neural Architecture Search
Bas van Stein
Hongya Wang
Thomas Bäck
14
10
0
01 Nov 2020
Deep Learning as a Competitive Feature-Free Approach for Automated Algorithm Selection on the Traveling Salesperson Problem
M. Seiler
J. Pohl
Jakob Bossek
P. Kerschke
Heike Trautmann
15
21
0
29 Jun 2020
Landscape-Aware Fixed-Budget Performance Regression and Algorithm Selection for Modular CMA-ES Variants
Anja Jankovic
Carola Doerr
34
38
0
17 Jun 2020
An analysis on the use of autoencoders for representation learning: fundamentals, learning task case studies, explainability and challenges
D. Charte
F. Charte
M. J. D. Jesus
Francisco Herrera
SSL
OOD
109
51
0
21 May 2020
An Introduction to Variational Autoencoders
Diederik P. Kingma
Max Welling
BDL
SSL
DRL
66
2,322
0
06 Jun 2019
Recent Advances in Autoencoder-Based Representation Learning
Michael Tschannen
Olivier Bachem
Mario Lucic
OOD
SSL
DRL
52
442
0
12 Dec 2018
Automated Algorithm Selection: Survey and Perspectives
P. Kerschke
Holger H. Hoos
Frank Neumann
Heike Trautmann
26
376
0
28 Nov 2018
A practical tutorial on autoencoders for nonlinear feature fusion: Taxonomy, models, software and guidelines
D. Charte
F. Charte
S. García
M. J. D. Jesus
Francisco Herrera
69
257
0
04 Jan 2018
Automated Algorithm Selection on Continuous Black-Box Problems By Combining Exploratory Landscape Analysis and Machine Learning
P. Kerschke
Heike Trautmann
49
151
0
24 Nov 2017
Comprehensive Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems Using the R-Package flacco
P. Kerschke
27
101
0
17 Aug 2017
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
372
16,962
0
20 Dec 2013
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OOD
SSL
184
12,384
0
24 Jun 2012
CMA-ES with Two-Point Step-Size Adaptation
Nikolaus Hansen
81
579
0
02 May 2008
1