Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2303.15438
Cited By
v1
v2 (latest)
On the Stepwise Nature of Self-Supervised Learning
27 March 2023
James B. Simon
Maksis Knutins
Liu Ziyin
Daniel Geisz
Abraham J. Fetterman
Joshua Albrecht
SSL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"On the Stepwise Nature of Self-Supervised Learning"
26 / 26 papers shown
Title
Alternating Gradient Flows: A Theory of Feature Learning in Two-layer Neural Networks
D. Kunin
Giovanni Luca Marchetti
F. Chen
Dhruva Karkada
James B. Simon
M. DeWeese
Surya Ganguli
Nina Miolane
32
0
0
06 Jun 2025
Saddle-To-Saddle Dynamics in Deep ReLU Networks: Low-Rank Bias in the First Saddle Escape
Ioannis Bantzis
James B. Simon
Arthur Jacot
ODL
51
0
0
27 May 2025
AdaDim: Dimensionality Adaptation for SSL Representational Dynamics
Kiran Kokilepersaud
Mohit Prabhushankar
Ghassan AlRegib
94
0
0
18 May 2025
Position: An Empirically Grounded Identifiability Theory Will Accelerate Self-Supervised Learning Research
Patrik Reizinger
Randall Balestriero
David Klindt
Wieland Brendel
199
1
0
17 Apr 2025
Position: Solve Layerwise Linear Models First to Understand Neural Dynamical Phenomena (Neural Collapse, Emergence, Lazy/Rich Regime, and Grokking)
Yoonsoo Nam
Seok Hyeong Lee
Clementine Domine
Yea Chan Park
Charles London
Wonyl Choi
Niclas Goring
Seungjai Lee
AI4CE
209
1
0
28 Feb 2025
It's Not Just a Phase: On Investigating Phase Transitions in Deep Learning-based Side-channel Analysis
Sengim Karayalçin
Marina Krček
Stjepan Picek
AAML
159
0
0
01 Feb 2025
Infinite Width Limits of Self Supervised Neural Networks
Maximilian Fleissner
Gautham Govind Anil
Debarghya Ghoshdastidar
SSL
465
1
0
17 Nov 2024
Cross-Entropy Is All You Need To Invert the Data Generating Process
Patrik Reizinger
Alice Bizeul
Attila Juhos
Julia E. Vogt
Randall Balestriero
Wieland Brendel
David Klindt
SSL
OOD
BDL
DRL
229
6
0
29 Oct 2024
The Optimization Landscape of SGD Across the Feature Learning Strength
Alexander B. Atanasov
Alexandru Meterez
James B. Simon
Cengiz Pehlevan
150
6
0
06 Oct 2024
Towards Automatic Assessment of Self-Supervised Speech Models using Rank
Zakaria Aldeneh
Vimal Thilak
Takuya Higuchi
B. Theobald
Tatiana Likhomanenko
SSL
153
1
0
16 Sep 2024
How JEPA Avoids Noisy Features: The Implicit Bias of Deep Linear Self Distillation Networks
Etai Littwin
Omid Saremi
Madhu Advani
Vimal Thilak
Preetum Nakkiran
Chen Huang
Joshua Susskind
78
5
0
03 Jul 2024
InfoNCE: Identifying the Gap Between Theory and Practice
E. Rusak
Patrik Reizinger
Attila Juhos
Oliver Bringmann
Roland S. Zimmermann
Wieland Brendel
133
11
0
28 Jun 2024
Training Dynamics of Nonlinear Contrastive Learning Model in the High Dimensional Limit
Lineghuan Meng
Chuang Wang
53
1
0
11 Jun 2024
Phase Transitions in the Output Distribution of Large Language Models
Julian Arnold
Flemming Holtorf
Frank Schafer
Niels Lörch
69
2
0
27 May 2024
Mechanistic Interpretability for AI Safety -- A Review
Leonard Bereska
E. Gavves
AI4CE
135
158
0
22 Apr 2024
Auxiliary task demands mask the capabilities of smaller language models
Jennifer Hu
Michael C. Frank
ELM
94
32
0
03 Apr 2024
When can we Approximate Wide Contrastive Models with Neural Tangent Kernels and Principal Component Analysis?
Gautham Govind Anil
Pascal Esser
Debarghya Ghoshdastidar
81
1
0
13 Mar 2024
Compression of Structured Data with Autoencoders: Provable Benefit of Nonlinearities and Depth
Kevin Kögler
Aleksandr Shevchenko
Hamed Hassani
Marco Mondelli
MLT
85
1
0
07 Feb 2024
FroSSL: Frobenius Norm Minimization for Efficient Multiview Self-Supervised Learning
Oscar Skean
Aayush Dhakal
Nathan Jacobs
Luis Gonzalo Sánchez Giraldo
70
0
0
04 Oct 2023
Representation Learning Dynamics of Self-Supervised Models
Pascal Esser
Satyaki Mukherjee
Debarghya Ghoshdastidar
SSL
82
3
0
05 Sep 2023
Transformers learn through gradual rank increase
Enric Boix-Adserà
Etai Littwin
Emmanuel Abbe
Samy Bengio
J. Susskind
102
37
0
12 Jun 2023
The Quantization Model of Neural Scaling
Eric J. Michaud
Ziming Liu
Uzay Girit
Max Tegmark
MILM
125
89
0
23 Mar 2023
The SSL Interplay: Augmentations, Inductive Bias, and Generalization
Vivien A. Cabannes
B. Kiani
Randall Balestriero
Yann LeCun
A. Bietti
SSL
92
33
0
06 Feb 2023
Neural networks learn to magnify areas near decision boundaries
Jacob A. Zavatone-Veth
Sheng Yang
Julian Rubinfien
Cengiz Pehlevan
MLT
AI4CE
72
6
0
26 Jan 2023
Implicit variance regularization in non-contrastive SSL
Manu Srinath Halvagal
Axel Laborieux
Friedemann Zenke
126
10
0
09 Dec 2022
Unsupervised Learning of Visual Features by Contrasting Cluster Assignments
Mathilde Caron
Ishan Misra
Julien Mairal
Priya Goyal
Piotr Bojanowski
Armand Joulin
OCL
SSL
342
4,109
0
17 Jun 2020
1