ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.15354
  4. Cited By
From Single-Hospital to Multi-Centre Applications: Enhancing the
  Generalisability of Deep Learning Models for Adverse Event Prediction in the
  ICU
v1v2 (latest)

From Single-Hospital to Multi-Centre Applications: Enhancing the Generalisability of Deep Learning Models for Adverse Event Prediction in the ICU

27 March 2023
Patrick Rockenschaub
A. Hilbert
Tabea Kossen
F. Dincklage
V. Madai
D. Frey
    OOD
ArXiv (abs)PDFHTML

Papers citing "From Single-Hospital to Multi-Centre Applications: Enhancing the Generalisability of Deep Learning Models for Adverse Event Prediction in the ICU"

8 / 8 papers shown
Title
Evaluation of Active Feature Acquisition Methods for Time-varying Feature Settings
Evaluation of Active Feature Acquisition Methods for Time-varying Feature Settings
Henrik von Kleist
Alireza Zamanian
I. Shpitser
Narges Ahmidi
OffRL
187
3
0
03 Dec 2023
HiRID-ICU-Benchmark -- A Comprehensive Machine Learning Benchmark on
  High-resolution ICU Data
HiRID-ICU-Benchmark -- A Comprehensive Machine Learning Benchmark on High-resolution ICU Data
Hugo Yèche
Rita Kuznetsova
M. Zimmermann
Matthias Huser
Xinrui Lyu
M. Faltys
Gunnar Rätsch
114
42
0
16 Nov 2021
Predicting sepsis in multi-site, multi-national intensive care cohorts
  using deep learning
Predicting sepsis in multi-site, multi-national intensive care cohorts using deep learning
Michael Moor
Nicolas Bennet
Drago Plečko
Max Horn
Bastian Rieck
N. Meinshausen
Peter Buhlmann
Karsten Borgwardt
48
6
0
12 Jul 2021
In Search of Lost Domain Generalization
In Search of Lost Domain Generalization
Ishaan Gulrajani
David Lopez-Paz
OOD
103
1,157
0
02 Jul 2020
Distributionally Robust Neural Networks for Group Shifts: On the
  Importance of Regularization for Worst-Case Generalization
Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization
Shiori Sagawa
Pang Wei Koh
Tatsunori B. Hashimoto
Percy Liang
OOD
108
1,249
0
20 Nov 2019
Learning to Generalize: Meta-Learning for Domain Generalization
Learning to Generalize: Meta-Learning for Domain Generalization
Da Li
Yongxin Yang
Yi-Zhe Song
Timothy M. Hospedales
OOD
102
1,430
0
10 Oct 2017
Deep CORAL: Correlation Alignment for Deep Domain Adaptation
Deep CORAL: Correlation Alignment for Deep Domain Adaptation
Baochen Sun
Kate Saenko
OOD
105
3,170
0
06 Jul 2016
On the Properties of Neural Machine Translation: Encoder-Decoder
  Approaches
On the Properties of Neural Machine Translation: Encoder-Decoder Approaches
Kyunghyun Cho
B. V. Merrienboer
Dzmitry Bahdanau
Yoshua Bengio
AI4CEAIMat
268
6,791
0
03 Sep 2014
1