ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.11323
  4. Cited By
Tangent Bundle Convolutional Learning: from Manifolds to Cellular
  Sheaves and Back

Tangent Bundle Convolutional Learning: from Manifolds to Cellular Sheaves and Back

20 March 2023
Claudio Battiloro
Zhiyang Wang
Hans Riess
Paolo Di Lorenzo
Alejandro Ribeiro
ArXivPDFHTML

Papers citing "Tangent Bundle Convolutional Learning: from Manifolds to Cellular Sheaves and Back"

18 / 18 papers shown
Title
Topological Neural Networks over the Air
Topological Neural Networks over the Air
Simone Fiorellino
Claudio Battiloro
Paolo Di Lorenzo
107
3
0
17 Feb 2025
Higher-Order Topological Directionality and Directed Simplicial Neural Networks
Higher-Order Topological Directionality and Directed Simplicial Neural Networks
Manuel Lecha
Andrea Cavallo
Francesca Dominici
Elvin Isufi
Claudio Battiloro
AI4CE
193
4
0
17 Jan 2025
Bundle Neural Networks for message diffusion on graphs
Bundle Neural Networks for message diffusion on graphs
Jacob Bamberger
Federico Barbero
Xiaowen Dong
Michael M. Bronstein
88
2
0
24 May 2024
E(n) Equivariant Topological Neural Networks
E(n) Equivariant Topological Neural Networks
Claudio Battiloro
Ege Karaismailoglu
Mauricio Tec
George Dasoulas
Michelle Audirac
Francesca Dominici
84
9
0
24 May 2024
Cell Attention Networks
Cell Attention Networks
Lorenzo Giusti
Claudio Battiloro
Lucia Testa
P. Lorenzo
S. Sardellitti
Sergio Barbarossa
3DPC
GNN
344
35
0
16 Sep 2022
Diffusion of Information on Networked Lattices by Gossip
Diffusion of Information on Networked Lattices by Gossip
Hans Riess
Robert Ghrist
34
10
0
01 Apr 2022
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and
  Oversmoothing in GNNs
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
Cristian Bodnar
Francesco Di Giovanni
B. Chamberlain
Pietro Lio
Michael M. Bronstein
67
177
0
09 Feb 2022
Understanding over-squashing and bottlenecks on graphs via curvature
Understanding over-squashing and bottlenecks on graphs via curvature
Jake Topping
Francesco Di Giovanni
B. Chamberlain
Xiaowen Dong
M. Bronstein
101
442
0
29 Nov 2021
Sheaf Neural Networks
Sheaf Neural Networks
J. Hansen
Thomas Gebhart
GNN
36
40
0
08 Dec 2020
Graphon Neural Networks and the Transferability of Graph Neural Networks
Graphon Neural Networks and the Transferability of Graph Neural Networks
Luana Ruiz
Luiz F. O. Chamon
Alejandro Ribeiro
GNN
63
145
0
05 Jun 2020
Spectral Convergence of Graph Laplacian and Heat Kernel Reconstruction
  in $L^\infty$ from Random Samples
Spectral Convergence of Graph Laplacian and Heat Kernel Reconstruction in L∞L^\inftyL∞ from Random Samples
David B. Dunson
Hau‐Tieng Wu
Nan Wu
53
65
0
11 Dec 2019
Transferability of Spectral Graph Convolutional Neural Networks
Transferability of Spectral Graph Convolutional Neural Networks
Ron Levie
Wei Huang
Lorenzo Bucci
M. Bronstein
Gitta Kutyniok
GNN
93
128
0
30 Jul 2019
A General Theory of Equivariant CNNs on Homogeneous Spaces
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLT
AI4CE
202
314
0
05 Nov 2018
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
208
7,618
0
01 Oct 2018
Relational inductive biases, deep learning, and graph networks
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CE
NAI
558
3,112
0
04 Jun 2018
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas Guibas
3DH
3DPC
3DV
PINN
430
14,259
0
02 Dec 2016
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
647
3,273
0
24 Nov 2016
Vector Diffusion Maps and the Connection Laplacian
Vector Diffusion Maps and the Connection Laplacian
A. Singer
Hau-Tieng Wu
58
310
0
01 Feb 2011
1