Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2303.10993
Cited By
A Survey on Oversmoothing in Graph Neural Networks
20 March 2023
T. Konstantin Rusch
Michael M. Bronstein
Siddhartha Mishra
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Survey on Oversmoothing in Graph Neural Networks"
17 / 117 papers shown
Title
Graph-based Time Series Clustering for End-to-End Hierarchical Forecasting
Andrea Cini
Danilo P. Mandic
C. Alippi
AI4TS
26
9
0
30 May 2023
Demystifying Oversmoothing in Attention-Based Graph Neural Networks
Xinyi Wu
A. Ajorlou
Zihui Wu
Ali Jadbabaie
13
34
0
25 May 2023
Neural Oscillators are Universal
S. Lanthaler
T. Konstantin Rusch
Siddhartha Mishra
27
9
0
15 May 2023
Segment Anything in Non-Euclidean Domains: Challenges and Opportunities
Yongcheng Jing
Xinchao Wang
Dacheng Tao
35
21
0
23 Apr 2023
Architectures of Topological Deep Learning: A Survey of Message-Passing Topological Neural Networks
Mathilde Papillon
Sophia Sanborn
Mustafa Hajij
Nina Miolane
3DV
AI4CE
30
33
0
20 Apr 2023
Feudal Graph Reinforcement Learning
Tommaso Marzi
Arshjot Khehra
Andrea Cini
C. Alippi
22
0
0
11 Apr 2023
G-Signatures: Global Graph Propagation With Randomized Signatures
Bernhard Schafl
Lukas Gruber
Johannes Brandstetter
Sepp Hochreiter
19
2
0
17 Feb 2023
Neurosymbolic AI for Reasoning over Knowledge Graphs: A Survey
L. Delong
Ramon Fernández Mir
Jacques D. Fleuriot
NAI
28
12
0
14 Feb 2023
GREAD: Graph Neural Reaction-Diffusion Networks
Jeongwhan Choi
Seoyoung Hong
Noseong Park
Sung-Bae Cho
DiffM
GNN
21
26
0
25 Nov 2022
Expander Graph Propagation
Andreea Deac
Marc Lackenby
Petar Velivcković
96
52
0
06 Oct 2022
Gradient Gating for Deep Multi-Rate Learning on Graphs
T. Konstantin Rusch
B. Chamberlain
Michael W. Mahoney
Michael M. Bronstein
Siddhartha Mishra
76
53
0
02 Oct 2022
Understanding convolution on graphs via energies
Francesco Di Giovanni
J. Rowbottom
B. Chamberlain
Thomas Markovich
Michael M. Bronstein
GNN
18
43
0
22 Jun 2022
SkipNode: On Alleviating Performance Degradation for Deep Graph Convolutional Networks
Weigang Lu
Yibing Zhan
Binbin Lin
Ziyu Guan
Liu Liu
Baosheng Yu
Wei Zhao
Yaming Yang
Dacheng Tao
GNN
13
13
0
22 Dec 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
174
1,104
0
27 Apr 2021
Geom-GCN: Geometric Graph Convolutional Networks
Hongbin Pei
Bingzhen Wei
Kevin Chen-Chuan Chang
Yu Lei
Bo Yang
GNN
169
1,078
0
13 Feb 2020
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
267
1,944
0
09 Jun 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
251
1,811
0
25 Nov 2016
Previous
1
2
3