ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.10139
  4. Cited By
Distill n' Explain: explaining graph neural networks using simple
  surrogates

Distill n' Explain: explaining graph neural networks using simple surrogates

17 March 2023
Tamara A. Pereira
Erik Nasciment
Lucas Resck
Diego Mesquita
Amauri Souza
ArXivPDFHTML

Papers citing "Distill n' Explain: explaining graph neural networks using simple surrogates"

27 / 27 papers shown
Title
DEGREE: Decomposition Based Explanation For Graph Neural Networks
DEGREE: Decomposition Based Explanation For Graph Neural Networks
Qizhang Feng
Ninghao Liu
Fan Yang
Ruixiang Tang
Mengnan Du
Xia Hu
84
23
0
22 May 2023
Which Explanation Should I Choose? A Function Approximation Perspective
  to Characterizing Post Hoc Explanations
Which Explanation Should I Choose? A Function Approximation Perspective to Characterizing Post Hoc Explanations
Tessa Han
Suraj Srinivas
Himabindu Lakkaraju
FAtt
80
86
0
02 Jun 2022
Dataset Distillation using Neural Feature Regression
Dataset Distillation using Neural Feature Regression
Yongchao Zhou
E. Nezhadarya
Jimmy Ba
DD
FedML
75
157
0
01 Jun 2022
ETA Prediction with Graph Neural Networks in Google Maps
ETA Prediction with Graph Neural Networks in Google Maps
Austin Derrow-Pinion
Jennifer She
David Wong
O. Lange
Todd Hester
...
Ang Li
Zhongwen Xu
Alvaro Sanchez-Gonzalez
Yujia Li
Petar Velivcković
AI4TS
56
228
0
25 Aug 2021
Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of
  GNN Explanation Methods
Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of GNN Explanation Methods
Chirag Agarwal
Marinka Zitnik
Himabindu Lakkaraju
48
52
0
16 Jun 2021
Scaling Ensemble Distribution Distillation to Many Classes with Proxy
  Targets
Scaling Ensemble Distribution Distillation to Many Classes with Proxy Targets
Max Ryabinin
A. Malinin
Mark Gales
UQCV
44
18
0
14 May 2021
Generative Causal Explanations for Graph Neural Networks
Generative Causal Explanations for Graph Neural Networks
Wanyu Lin
Hao Lan
Baochun Li
CML
59
176
0
14 Apr 2021
On Explainability of Graph Neural Networks via Subgraph Explorations
On Explainability of Graph Neural Networks via Subgraph Explorations
Hao Yuan
Haiyang Yu
Jie Wang
Kang Li
Shuiwang Ji
FAtt
78
390
0
09 Feb 2021
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
Ana Lucic
Maartje ter Hoeve
Gabriele Tolomei
Maarten de Rijke
Fabrizio Silvestri
143
145
0
05 Feb 2021
Cross-Layer Distillation with Semantic Calibration
Cross-Layer Distillation with Semantic Calibration
Defang Chen
Jian-Ping Mei
Yuan Zhang
Can Wang
Yan Feng
Chun-Yen Chen
FedML
73
298
0
06 Dec 2020
PLOP: Learning without Forgetting for Continual Semantic Segmentation
PLOP: Learning without Forgetting for Continual Semantic Segmentation
Arthur Douillard
Yifu Chen
Arnaud Dapogny
Matthieu Cord
CLL
44
240
0
23 Nov 2020
Combining Label Propagation and Simple Models Out-performs Graph Neural
  Networks
Combining Label Propagation and Simple Models Out-performs Graph Neural Networks
Qian Huang
Horace He
Abhay Singh
Ser-Nam Lim
Austin R. Benson
77
283
0
27 Oct 2020
Reliable Post hoc Explanations: Modeling Uncertainty in Explainability
Reliable Post hoc Explanations: Modeling Uncertainty in Explainability
Dylan Slack
Sophie Hilgard
Sameer Singh
Himabindu Lakkaraju
FAtt
57
162
0
11 Aug 2020
Simple and Deep Graph Convolutional Networks
Simple and Deep Graph Convolutional Networks
Ming Chen
Zhewei Wei
Zengfeng Huang
Bolin Ding
Yaliang Li
GNN
116
1,485
0
04 Jul 2020
Drug discovery with explainable artificial intelligence
Drug discovery with explainable artificial intelligence
José Jiménez-Luna
F. Grisoni
G. Schneider
172
634
0
01 Jul 2020
XGNN: Towards Model-Level Explanations of Graph Neural Networks
XGNN: Towards Model-Level Explanations of Graph Neural Networks
Haonan Yuan
Jiliang Tang
Xia Hu
Shuiwang Ji
75
398
0
03 Jun 2020
Generalized Bayesian Posterior Expectation Distillation for Deep Neural
  Networks
Generalized Bayesian Posterior Expectation Distillation for Deep Neural Networks
Meet P. Vadera
B. Jalaeian
Benjamin M. Marlin
BDL
FedML
UQCV
45
20
0
16 May 2020
SIGN: Scalable Inception Graph Neural Networks
SIGN: Scalable Inception Graph Neural Networks
Fabrizio Frasca
Emanuele Rossi
D. Eynard
B. Chamberlain
M. Bronstein
Federico Monti
GNN
117
396
0
23 Apr 2020
Distilling Knowledge from Graph Convolutional Networks
Distilling Knowledge from Graph Convolutional Networks
Yiding Yang
Jiayan Qiu
Xiuming Zhang
Dacheng Tao
Xinchao Wang
210
230
0
23 Mar 2020
Learning to Simulate Complex Physics with Graph Networks
Learning to Simulate Complex Physics with Graph Networks
Alvaro Sanchez-Gonzalez
Jonathan Godwin
Tobias Pfaff
Rex Ying
J. Leskovec
Peter W. Battaglia
PINN
AI4CE
133
1,089
0
21 Feb 2020
GraphLIME: Local Interpretable Model Explanations for Graph Neural
  Networks
GraphLIME: Local Interpretable Model Explanations for Graph Neural Networks
Q. Huang
M. Yamada
Yuan Tian
Dinesh Singh
Dawei Yin
Yi-Ju Chang
FAtt
75
354
0
17 Jan 2020
GNNExplainer: Generating Explanations for Graph Neural Networks
GNNExplainer: Generating Explanations for Graph Neural Networks
Rex Ying
Dylan Bourgeois
Jiaxuan You
Marinka Zitnik
J. Leskovec
LLMAG
140
1,319
0
10 Mar 2019
Fast Graph Representation Learning with PyTorch Geometric
Fast Graph Representation Learning with PyTorch Geometric
Matthias Fey
J. E. Lenssen
3DH
GNN
3DPC
220
4,336
0
06 Mar 2019
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
238
7,642
0
01 Oct 2018
Graph Convolutional Neural Networks for Web-Scale Recommender Systems
Graph Convolutional Neural Networks for Web-Scale Recommender Systems
Rex Ying
Ruining He
Kaifeng Chen
Pong Eksombatchai
William L. Hamilton
J. Leskovec
GNN
BDL
257
3,537
0
06 Jun 2018
Neural Message Passing for Quantum Chemistry
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
588
7,443
0
04 Apr 2017
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,954
0
16 Feb 2016
1