Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2303.10139
Cited By
Distill n' Explain: explaining graph neural networks using simple surrogates
17 March 2023
Tamara A. Pereira
Erik Nasciment
Lucas Resck
Diego Mesquita
Amauri Souza
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Distill n' Explain: explaining graph neural networks using simple surrogates"
27 / 27 papers shown
Title
DEGREE: Decomposition Based Explanation For Graph Neural Networks
Qizhang Feng
Ninghao Liu
Fan Yang
Ruixiang Tang
Mengnan Du
Xia Hu
84
23
0
22 May 2023
Which Explanation Should I Choose? A Function Approximation Perspective to Characterizing Post Hoc Explanations
Tessa Han
Suraj Srinivas
Himabindu Lakkaraju
FAtt
80
86
0
02 Jun 2022
Dataset Distillation using Neural Feature Regression
Yongchao Zhou
E. Nezhadarya
Jimmy Ba
DD
FedML
75
157
0
01 Jun 2022
ETA Prediction with Graph Neural Networks in Google Maps
Austin Derrow-Pinion
Jennifer She
David Wong
O. Lange
Todd Hester
...
Ang Li
Zhongwen Xu
Alvaro Sanchez-Gonzalez
Yujia Li
Petar Velivcković
AI4TS
56
228
0
25 Aug 2021
Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of GNN Explanation Methods
Chirag Agarwal
Marinka Zitnik
Himabindu Lakkaraju
48
52
0
16 Jun 2021
Scaling Ensemble Distribution Distillation to Many Classes with Proxy Targets
Max Ryabinin
A. Malinin
Mark Gales
UQCV
44
18
0
14 May 2021
Generative Causal Explanations for Graph Neural Networks
Wanyu Lin
Hao Lan
Baochun Li
CML
59
176
0
14 Apr 2021
On Explainability of Graph Neural Networks via Subgraph Explorations
Hao Yuan
Haiyang Yu
Jie Wang
Kang Li
Shuiwang Ji
FAtt
78
390
0
09 Feb 2021
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
Ana Lucic
Maartje ter Hoeve
Gabriele Tolomei
Maarten de Rijke
Fabrizio Silvestri
143
145
0
05 Feb 2021
Cross-Layer Distillation with Semantic Calibration
Defang Chen
Jian-Ping Mei
Yuan Zhang
Can Wang
Yan Feng
Chun-Yen Chen
FedML
73
298
0
06 Dec 2020
PLOP: Learning without Forgetting for Continual Semantic Segmentation
Arthur Douillard
Yifu Chen
Arnaud Dapogny
Matthieu Cord
CLL
44
240
0
23 Nov 2020
Combining Label Propagation and Simple Models Out-performs Graph Neural Networks
Qian Huang
Horace He
Abhay Singh
Ser-Nam Lim
Austin R. Benson
77
283
0
27 Oct 2020
Reliable Post hoc Explanations: Modeling Uncertainty in Explainability
Dylan Slack
Sophie Hilgard
Sameer Singh
Himabindu Lakkaraju
FAtt
57
162
0
11 Aug 2020
Simple and Deep Graph Convolutional Networks
Ming Chen
Zhewei Wei
Zengfeng Huang
Bolin Ding
Yaliang Li
GNN
116
1,485
0
04 Jul 2020
Drug discovery with explainable artificial intelligence
José Jiménez-Luna
F. Grisoni
G. Schneider
172
634
0
01 Jul 2020
XGNN: Towards Model-Level Explanations of Graph Neural Networks
Haonan Yuan
Jiliang Tang
Xia Hu
Shuiwang Ji
75
398
0
03 Jun 2020
Generalized Bayesian Posterior Expectation Distillation for Deep Neural Networks
Meet P. Vadera
B. Jalaeian
Benjamin M. Marlin
BDL
FedML
UQCV
45
20
0
16 May 2020
SIGN: Scalable Inception Graph Neural Networks
Fabrizio Frasca
Emanuele Rossi
D. Eynard
B. Chamberlain
M. Bronstein
Federico Monti
GNN
117
396
0
23 Apr 2020
Distilling Knowledge from Graph Convolutional Networks
Yiding Yang
Jiayan Qiu
Xiuming Zhang
Dacheng Tao
Xinchao Wang
210
230
0
23 Mar 2020
Learning to Simulate Complex Physics with Graph Networks
Alvaro Sanchez-Gonzalez
Jonathan Godwin
Tobias Pfaff
Rex Ying
J. Leskovec
Peter W. Battaglia
PINN
AI4CE
133
1,089
0
21 Feb 2020
GraphLIME: Local Interpretable Model Explanations for Graph Neural Networks
Q. Huang
M. Yamada
Yuan Tian
Dinesh Singh
Dawei Yin
Yi-Ju Chang
FAtt
75
354
0
17 Jan 2020
GNNExplainer: Generating Explanations for Graph Neural Networks
Rex Ying
Dylan Bourgeois
Jiaxuan You
Marinka Zitnik
J. Leskovec
LLMAG
140
1,319
0
10 Mar 2019
Fast Graph Representation Learning with PyTorch Geometric
Matthias Fey
J. E. Lenssen
3DH
GNN
3DPC
220
4,336
0
06 Mar 2019
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
238
7,642
0
01 Oct 2018
Graph Convolutional Neural Networks for Web-Scale Recommender Systems
Rex Ying
Ruining He
Kaifeng Chen
Pong Eksombatchai
William L. Hamilton
J. Leskovec
GNN
BDL
257
3,537
0
06 Jun 2018
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
588
7,443
0
04 Apr 2017
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,954
0
16 Feb 2016
1