Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2303.09660
Cited By
Explainable GeoAI: Can saliency maps help interpret artificial intelligence's learning process? An empirical study on natural feature detection
16 March 2023
Chia-Yu Hsu
Wenwen Li
AAML
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Explainable GeoAI: Can saliency maps help interpret artificial intelligence's learning process? An empirical study on natural feature detection"
9 / 9 papers shown
Title
Geospatial Artificial Intelligence for Satellite-based Flood Extent Mapping: Concepts, Advances, and Future Perspectives
Hyunho Lee
Wenwen Li
AI4CE
43
0
0
03 Apr 2025
Interpretable Cross-Sphere Multiscale Deep Learning Predicts ENSO Skilfully Beyond 2 Years
Rixu Hao
Yuxin Zhao
Shaoqing Zhang
Guihua Wang
Xiong Deng
AI4Cl
AI4CE
39
0
0
27 Mar 2025
A comprehensive GeoAI review: Progress, Challenges and Outlooks
Anasse Boutayeb
Iyad Lahsen-cherif
Ahmed El Khadimi
89
0
0
16 Dec 2024
Improving Interpretability of Deep Active Learning for Flood Inundation Mapping Through Class Ambiguity Indices Using Multi-spectral Satellite Imagery
Hyunho Lee
Wenwen Li
AI4CE
25
9
0
29 Apr 2024
GeoAI Reproducibility and Replicability: a computational and spatial perspective
Wenwen Li
Chia-Yu Hsu
Sizhe Wang
Peter Kedron
AI4CE
28
6
0
15 Apr 2024
Enhancing Explainability in Mobility Data Science through a combination of methods
Georgios Makridis
Vasileios Koukos
G. Fatouros
D. Kyriazis
19
4
0
01 Dec 2023
Assessment of a new GeoAI foundation model for flood inundation mapping
Wenwen Li
Hyunho Lee
Sizhe Wang
Chia-Yu Hsu
S. Arundel
AI4CE
15
17
0
25 Sep 2023
Towards eXplainable AI for Mobility Data Science
Anahid N. Jalali
Anita Graser
Clemens Heistracher
14
2
0
17 Jul 2023
Using Deep Learning and Google Street View to Estimate the Demographic Makeup of the US
Timnit Gebru
J. Krause
Yilun Wang
Duyun Chen
Jia Deng
Erez Aiden Lieberman
Li Fei-Fei
HAI
93
414
0
22 Feb 2017
1