14
2

Towards eXplainable AI for Mobility Data Science

Abstract

This paper presents our ongoing work towards XAI for Mobility Data Science applications, focusing on explainable models that can learn from dense trajectory data, such as GPS tracks of vehicles and vessels using temporal graph neural networks (GNNs) and counterfactuals. We review the existing GeoXAI studies, argue the need for comprehensible explanations with human-centered approaches, and outline a research path toward XAI for Mobility Data Science.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.