ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.04248
  4. Cited By
TRACT: Denoising Diffusion Models with Transitive Closure
  Time-Distillation

TRACT: Denoising Diffusion Models with Transitive Closure Time-Distillation

7 March 2023
David Berthelot
Arnaud Autef
Jierui Lin
Dian Ang Yap
Shuangfei Zhai
Siyuan Hu
Daniel Zheng
Walter Talbot
Eric Gu
    DiffM
ArXivPDFHTML

Papers citing "TRACT: Denoising Diffusion Models with Transitive Closure Time-Distillation"

16 / 66 papers shown
Title
DiffEnc: Variational Diffusion with a Learned Encoder
DiffEnc: Variational Diffusion with a Learned Encoder
Beatrix M. G. Nielsen
Anders Christensen
Andrea Dittadi
Ole Winther
DiffM
21
10
0
30 Oct 2023
Improved Techniques for Training Consistency Models
Improved Techniques for Training Consistency Models
Yang Song
Prafulla Dhariwal
37
149
0
22 Oct 2023
Generative Marginalization Models
Generative Marginalization Models
Sulin Liu
Peter J. Ramadge
Ryan P. Adams
32
1
0
19 Oct 2023
State of the Art on Diffusion Models for Visual Computing
State of the Art on Diffusion Models for Visual Computing
Ryan Po
Wang Yifan
Vladislav Golyanik
Kfir Aberman
Jonathan T. Barron
...
Matthias Nießner
Bjorn Ommer
Christian Theobalt
Peter Wonka
Gordon Wetzstein
33
102
0
11 Oct 2023
Consistency Trajectory Models: Learning Probability Flow ODE Trajectory
  of Diffusion
Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion
Dongjun Kim
Chieh-Hsin Lai
Wei-Hsiang Liao
Naoki Murata
Yuhta Takida
Toshimitsu Uesaka
Yutong He
Yuki Mitsufuji
Stefano Ermon
DiffM
43
170
0
01 Oct 2023
AutoDiffusion: Training-Free Optimization of Time Steps and
  Architectures for Automated Diffusion Model Acceleration
AutoDiffusion: Training-Free Optimization of Time Steps and Architectures for Automated Diffusion Model Acceleration
Lijiang Li
Huixia Li
Xiawu Zheng
Jie Wu
Xuefeng Xiao
Rui Wang
Min Zheng
Xin Pan
Rongrong Ji
Rongrong Ji
83
35
0
19 Sep 2023
CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular
  Calorimeter Simulation
CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation
E. Buhmann
F. Gaede
Gregor Kasieczka
A. Korol
W. Korcari
K. Krüger
Peter McKeown
DiffM
32
24
0
11 Sep 2023
PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers
PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers
Phillip Lippe
Bastiaan S. Veeling
P. Perdikaris
Richard Turner
Johannes Brandstetter
DiffM
AI4CE
33
77
0
10 Aug 2023
SDXL: Improving Latent Diffusion Models for High-Resolution Image
  Synthesis
SDXL: Improving Latent Diffusion Models for High-Resolution Image Synthesis
Dustin Podell
Zion English
Kyle Lacey
A. Blattmann
Tim Dockhorn
Jonas Muller
Joe Penna
Robin Rombach
97
2,128
0
04 Jul 2023
BOOT: Data-free Distillation of Denoising Diffusion Models with
  Bootstrapping
BOOT: Data-free Distillation of Denoising Diffusion Models with Bootstrapping
Jiatao Gu
Shuangfei Zhai
Yizhe Zhang
Lingjie Liu
J. Susskind
DiffM
18
68
0
08 Jun 2023
A Geometric Perspective on Diffusion Models
A Geometric Perspective on Diffusion Models
Defang Chen
Zhenyu Zhou
Jianhan Mei
Chunhua Shen
Chun-Yen Chen
C. Wang
DiffM
23
19
0
31 May 2023
f-DM: A Multi-stage Diffusion Model via Progressive Signal
  Transformation
f-DM: A Multi-stage Diffusion Model via Progressive Signal Transformation
Jiatao Gu
Shuangfei Zhai
Yizhe Zhang
Miguel Angel Bautista
J. Susskind
DiffM
53
26
0
10 Oct 2022
A Survey on Generative Diffusion Model
A Survey on Generative Diffusion Model
Hanqun Cao
Cheng Tan
Zhangyang Gao
Yilun Xu
Guangyong Chen
Pheng-Ann Heng
Stan Z. Li
MedIm
37
206
0
06 Sep 2022
Diffusion-LM Improves Controllable Text Generation
Diffusion-LM Improves Controllable Text Generation
Xiang Lisa Li
John Thickstun
Ishaan Gulrajani
Percy Liang
Tatsunori B. Hashimoto
AI4CE
173
777
0
27 May 2022
Argmax Flows and Multinomial Diffusion: Learning Categorical
  Distributions
Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions
Emiel Hoogeboom
Didrik Nielsen
P. Jaini
Patrick Forré
Max Welling
DiffM
207
394
0
10 Feb 2021
Knowledge Distillation in Iterative Generative Models for Improved
  Sampling Speed
Knowledge Distillation in Iterative Generative Models for Improved Sampling Speed
Eric Luhman
Troy Luhman
DiffM
195
258
0
07 Jan 2021
Previous
12