ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.19947
21
18

A Geometric Perspective on Diffusion Models

31 May 2023
Defang Chen
Zhenyu Zhou
Jianhan Mei
Chunhua Shen
Chun-Yen Chen
C. Wang
    DiffM
ArXivPDFHTML
Abstract

Recent years have witnessed significant progress in developing effective training and fast sampling techniques for diffusion models. A remarkable advancement is the use of stochastic differential equations (SDEs) and their marginal-preserving ordinary differential equations (ODEs) to describe data perturbation and generative modeling in a unified framework. In this paper, we carefully inspect the ODE-based sampling of a popular variance-exploding SDE and reveal several intriguing structures of its sampling dynamics. We discover that the data distribution and the noise distribution are smoothly connected with a quasi-linear sampling trajectory and another implicit denoising trajectory that even converges faster. Meanwhile, the denoising trajectory governs the curvature of the corresponding sampling trajectory and its various finite differences yield all second-order samplers used in practice. Furthermore, we establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm, with which we can characterize the asymptotic behavior of diffusion models and identify the empirical score deviation.

View on arXiv
Comments on this paper